Relation between CIDNP formed upon geminate and bulk recombination of radical pairs

A theoretical approach to time-resolved Chemically Induced Dynamic Nuclear Polarization (CIDNP) is proposed, which allows one to obtain the general relation between polarization formed upon recombination of geminate spin-correlated radical pairs, the so-called G-pairs, and upon recombination of radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2017-07, Vol.147 (2), p.024303-024303
Hauptverfasser: Sosnovsky, Denis V., Morozova, Olga B., Yurkovskaya, Alexandra V., Ivanov, Konstantin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theoretical approach to time-resolved Chemically Induced Dynamic Nuclear Polarization (CIDNP) is proposed, which allows one to obtain the general relation between polarization formed upon recombination of geminate spin-correlated radical pairs, the so-called G-pairs, and upon recombination of radical pairs formed by encounters of free radicals in solution, the so-called F-pairs. This relation is described by a universal parameter denoted as γ. In this work, the γ value is computed for the arbitrary spin multiplicity, singlet or triplet, of the precursor of the G-pairs as well as for arbitrary recombination rate constants of radical pairs in singlet and triplet states, k S and k T , respectively. Furthermore, the treatment is extended to the situation where radicals undergo transformation resulting in different reactivity or magnetic parameters for F-pairs and G-pairs. The proposed theory enables modeling of time-resolved CIDNP data in cases where (i) both recombination channels are active and (ii) fast protonation/deprotonation of radicals changes the effective γ value.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4986243