Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time

Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2017-06, Vol.95 (6-1), p.062134-062134, Article 062134
Hauptverfasser: Guevara Hidalgo, Esteban, Nemoto, Takahiro, Lecomte, Vivien
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 062134
container_issue 6-1
container_start_page 062134
container_title Physical review. E
container_volume 95
creator Guevara Hidalgo, Esteban
Nemoto, Takahiro
Lecomte, Vivien
description Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.
doi_str_mv 10.1103/PhysRevE.95.062134
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920197848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920197848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-4924d7ab68b82a42417de0ea8dc478ebc29c910be5aa9b421fcd13c7bdb1acc73</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBCIVqU_wAH5yCXFr9QxN1S1gFQBQnCObGfTGiVOiZNK7deTKKWnnV3NzI4GoVtKZpQS_vCxPYRP2C9nKp6ROaNcXKAxE5JEhMT88oxFPELTEH4IIXROlKTsGo1YIonijI7RceW8ayBqXAlY-wznwx7cEXCwunB-E7DzuNkChr0uWt24yuMqx4WuNxBlsHfDKW-97UF4xG9tCbXr1FjvdnWl7ba3sJVvnG-rNuD-3Q26ynURYHqaE_S9Wn4tXqL1-_Pr4mkdWU54EwnFRCa1mScmYVowQWUGBHSSWSETMJYpqygxEGutjGA0txnlVprMUG2t5BN0P_h2SX5bCE1aumChKLSHLktKFSNUyUQkHZUNVFtXIdSQp7valbo-pJSkfe3pf-2pitOh9k50d_JvTQnZWfJfMv8D3o-Clg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920197848</pqid></control><display><type>article</type><title>Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time</title><source>American Physical Society Journals</source><creator>Guevara Hidalgo, Esteban ; Nemoto, Takahiro ; Lecomte, Vivien</creator><creatorcontrib>Guevara Hidalgo, Esteban ; Nemoto, Takahiro ; Lecomte, Vivien</creatorcontrib><description>Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.95.062134</identifier><identifier>PMID: 28709321</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2017-06, Vol.95 (6-1), p.062134-062134, Article 062134</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-4924d7ab68b82a42417de0ea8dc478ebc29c910be5aa9b421fcd13c7bdb1acc73</citedby><cites>FETCH-LOGICAL-c303t-4924d7ab68b82a42417de0ea8dc478ebc29c910be5aa9b421fcd13c7bdb1acc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28709321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guevara Hidalgo, Esteban</creatorcontrib><creatorcontrib>Nemoto, Takahiro</creatorcontrib><creatorcontrib>Lecomte, Vivien</creatorcontrib><title>Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBCIVqU_wAH5yCXFr9QxN1S1gFQBQnCObGfTGiVOiZNK7deTKKWnnV3NzI4GoVtKZpQS_vCxPYRP2C9nKp6ROaNcXKAxE5JEhMT88oxFPELTEH4IIXROlKTsGo1YIonijI7RceW8ayBqXAlY-wznwx7cEXCwunB-E7DzuNkChr0uWt24yuMqx4WuNxBlsHfDKW-97UF4xG9tCbXr1FjvdnWl7ba3sJVvnG-rNuD-3Q26ynURYHqaE_S9Wn4tXqL1-_Pr4mkdWU54EwnFRCa1mScmYVowQWUGBHSSWSETMJYpqygxEGutjGA0txnlVprMUG2t5BN0P_h2SX5bCE1aumChKLSHLktKFSNUyUQkHZUNVFtXIdSQp7valbo-pJSkfe3pf-2pitOh9k50d_JvTQnZWfJfMv8D3o-Clg</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Guevara Hidalgo, Esteban</creator><creator>Nemoto, Takahiro</creator><creator>Lecomte, Vivien</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time</title><author>Guevara Hidalgo, Esteban ; Nemoto, Takahiro ; Lecomte, Vivien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-4924d7ab68b82a42417de0ea8dc478ebc29c910be5aa9b421fcd13c7bdb1acc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guevara Hidalgo, Esteban</creatorcontrib><creatorcontrib>Nemoto, Takahiro</creatorcontrib><creatorcontrib>Lecomte, Vivien</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guevara Hidalgo, Esteban</au><au>Nemoto, Takahiro</au><au>Lecomte, Vivien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2017-06</date><risdate>2017</risdate><volume>95</volume><issue>6-1</issue><spage>062134</spage><epage>062134</epage><pages>062134-062134</pages><artnum>062134</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.</abstract><cop>United States</cop><pmid>28709321</pmid><doi>10.1103/PhysRevE.95.062134</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2017-06, Vol.95 (6-1), p.062134-062134, Article 062134
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1920197848
source American Physical Society Journals
title Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-time%20and%20finite-size%20scalings%20in%20the%20evaluation%20of%20large-deviation%20functions:%20Numerical%20approach%20in%20continuous%20time&rft.jtitle=Physical%20review.%20E&rft.au=Guevara%20Hidalgo,%20Esteban&rft.date=2017-06&rft.volume=95&rft.issue=6-1&rft.spage=062134&rft.epage=062134&rft.pages=062134-062134&rft.artnum=062134&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.95.062134&rft_dat=%3Cproquest_cross%3E1920197848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920197848&rft_id=info:pmid/28709321&rfr_iscdi=true