Carbon Nitride Aerogels for the Photoredox Conversion of Water

Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2017-08, Vol.56 (36), p.10905-10910
Hauptverfasser: Ou, Honghui, Yang, Pengju, Lin, Lihua, Anpo, Masakazu, Wang, Xinchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10910
container_issue 36
container_start_page 10905
container_title Angewandte Chemie International Edition
container_volume 56
creator Ou, Honghui
Yang, Pengju
Lin, Lihua
Anpo, Masakazu
Wang, Xinchen
description Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis. Energy storage and conversion: Self‐supported carbon nitride (CN) aerogels synthesized by self‐assembly of low‐dimensional CN nanostructures are capable of catalyzing H2 and H2O2 evolution reactions under visible‐light irradiation. A simple strategy is used to construct 3D CN aerogel networks that show great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.
doi_str_mv 10.1002/anie.201705926
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920197007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931244439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-73474b03486dbfcdf2ba5e91f1026cf7b23a839e7e76f03bef636a99426a9d073</originalsourceid><addsrcrecordid>eNqF0M9PwjAUB_DGaATRq0ezxIuXYX-tXS8mhKCSEPSg8bh026uMjBXbofLfWwQx8eKlr4fP--bli9A5wX2CMb3WTQV9ionEiaLiAHVJQknMpGSH4c8Zi2WakA468X4efJpicYw6NJUEp4nqopuhdrltomnVuqqEaADOvkLtI2Nd1M4gepzZ1joo7Wc0tM07OF8Fbk30oltwp-jI6NrD2W720PPt6Gl4H08e7sbDwSQuuBQiloxLnmPGU1HmpigNzXUCihiCqSiMzCnTKVMgQQqDWQ5GMKGV4jS8JZash662uUtn31bg22xR-QLqWjdgVz4jKnSgJP6ml3_o3K5cE64LihHKOWcqqP5WFc5678BkS1cttFtnBGebZrNNs9m-2bBwsYtd5Qso9_ynygDUFnxUNaz_icsG0_HoN_wL0xuDRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931244439</pqid></control><display><type>article</type><title>Carbon Nitride Aerogels for the Photoredox Conversion of Water</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ou, Honghui ; Yang, Pengju ; Lin, Lihua ; Anpo, Masakazu ; Wang, Xinchen</creator><creatorcontrib>Ou, Honghui ; Yang, Pengju ; Lin, Lihua ; Anpo, Masakazu ; Wang, Xinchen</creatorcontrib><description>Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis. Energy storage and conversion: Self‐supported carbon nitride (CN) aerogels synthesized by self‐assembly of low‐dimensional CN nanostructures are capable of catalyzing H2 and H2O2 evolution reactions under visible‐light irradiation. A simple strategy is used to construct 3D CN aerogel networks that show great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201705926</identifier><identifier>PMID: 28710859</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Carbon ; Carbon nitride ; carbon nitrides ; Catalytic activity ; Chalcogenides ; Chemical energy ; Colloid chemistry ; Crosslinking ; Electronics industry ; Energy conversion ; Energy storage ; Functional groups ; Hydrogen evolution ; Hydrogen peroxide ; Hydrogen storage ; Irradiation ; Light irradiation ; Metal oxides ; Metals ; Oxides ; Photocatalysis ; Photosynthesis ; Polymers ; Self-assembly ; sol–gel chemistry ; Weight reduction</subject><ispartof>Angewandte Chemie International Edition, 2017-08, Vol.56 (36), p.10905-10910</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-73474b03486dbfcdf2ba5e91f1026cf7b23a839e7e76f03bef636a99426a9d073</citedby><cites>FETCH-LOGICAL-c4766-73474b03486dbfcdf2ba5e91f1026cf7b23a839e7e76f03bef636a99426a9d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201705926$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201705926$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28710859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ou, Honghui</creatorcontrib><creatorcontrib>Yang, Pengju</creatorcontrib><creatorcontrib>Lin, Lihua</creatorcontrib><creatorcontrib>Anpo, Masakazu</creatorcontrib><creatorcontrib>Wang, Xinchen</creatorcontrib><title>Carbon Nitride Aerogels for the Photoredox Conversion of Water</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis. Energy storage and conversion: Self‐supported carbon nitride (CN) aerogels synthesized by self‐assembly of low‐dimensional CN nanostructures are capable of catalyzing H2 and H2O2 evolution reactions under visible‐light irradiation. A simple strategy is used to construct 3D CN aerogel networks that show great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.</description><subject>Aerogels</subject><subject>Carbon</subject><subject>Carbon nitride</subject><subject>carbon nitrides</subject><subject>Catalytic activity</subject><subject>Chalcogenides</subject><subject>Chemical energy</subject><subject>Colloid chemistry</subject><subject>Crosslinking</subject><subject>Electronics industry</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>Hydrogen evolution</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen storage</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Oxides</subject><subject>Photocatalysis</subject><subject>Photosynthesis</subject><subject>Polymers</subject><subject>Self-assembly</subject><subject>sol–gel chemistry</subject><subject>Weight reduction</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0M9PwjAUB_DGaATRq0ezxIuXYX-tXS8mhKCSEPSg8bh026uMjBXbofLfWwQx8eKlr4fP--bli9A5wX2CMb3WTQV9ionEiaLiAHVJQknMpGSH4c8Zi2WakA468X4efJpicYw6NJUEp4nqopuhdrltomnVuqqEaADOvkLtI2Nd1M4gepzZ1joo7Wc0tM07OF8Fbk30oltwp-jI6NrD2W720PPt6Gl4H08e7sbDwSQuuBQiloxLnmPGU1HmpigNzXUCihiCqSiMzCnTKVMgQQqDWQ5GMKGV4jS8JZash662uUtn31bg22xR-QLqWjdgVz4jKnSgJP6ml3_o3K5cE64LihHKOWcqqP5WFc5678BkS1cttFtnBGebZrNNs9m-2bBwsYtd5Qso9_ynygDUFnxUNaz_icsG0_HoN_wL0xuDRQ</recordid><startdate>20170828</startdate><enddate>20170828</enddate><creator>Ou, Honghui</creator><creator>Yang, Pengju</creator><creator>Lin, Lihua</creator><creator>Anpo, Masakazu</creator><creator>Wang, Xinchen</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20170828</creationdate><title>Carbon Nitride Aerogels for the Photoredox Conversion of Water</title><author>Ou, Honghui ; Yang, Pengju ; Lin, Lihua ; Anpo, Masakazu ; Wang, Xinchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-73474b03486dbfcdf2ba5e91f1026cf7b23a839e7e76f03bef636a99426a9d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerogels</topic><topic>Carbon</topic><topic>Carbon nitride</topic><topic>carbon nitrides</topic><topic>Catalytic activity</topic><topic>Chalcogenides</topic><topic>Chemical energy</topic><topic>Colloid chemistry</topic><topic>Crosslinking</topic><topic>Electronics industry</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>Hydrogen evolution</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen storage</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Oxides</topic><topic>Photocatalysis</topic><topic>Photosynthesis</topic><topic>Polymers</topic><topic>Self-assembly</topic><topic>sol–gel chemistry</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Honghui</creatorcontrib><creatorcontrib>Yang, Pengju</creatorcontrib><creatorcontrib>Lin, Lihua</creatorcontrib><creatorcontrib>Anpo, Masakazu</creatorcontrib><creatorcontrib>Wang, Xinchen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Honghui</au><au>Yang, Pengju</au><au>Lin, Lihua</au><au>Anpo, Masakazu</au><au>Wang, Xinchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nitride Aerogels for the Photoredox Conversion of Water</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-08-28</date><risdate>2017</risdate><volume>56</volume><issue>36</issue><spage>10905</spage><epage>10910</epage><pages>10905-10910</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis. Energy storage and conversion: Self‐supported carbon nitride (CN) aerogels synthesized by self‐assembly of low‐dimensional CN nanostructures are capable of catalyzing H2 and H2O2 evolution reactions under visible‐light irradiation. A simple strategy is used to construct 3D CN aerogel networks that show great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28710859</pmid><doi>10.1002/anie.201705926</doi><tpages>6</tpages><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2017-08, Vol.56 (36), p.10905-10910
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1920197007
source Wiley Online Library Journals Frontfile Complete
subjects Aerogels
Carbon
Carbon nitride
carbon nitrides
Catalytic activity
Chalcogenides
Chemical energy
Colloid chemistry
Crosslinking
Electronics industry
Energy conversion
Energy storage
Functional groups
Hydrogen evolution
Hydrogen peroxide
Hydrogen storage
Irradiation
Light irradiation
Metal oxides
Metals
Oxides
Photocatalysis
Photosynthesis
Polymers
Self-assembly
sol–gel chemistry
Weight reduction
title Carbon Nitride Aerogels for the Photoredox Conversion of Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nitride%20Aerogels%20for%20the%20Photoredox%20Conversion%20of%20Water&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ou,%20Honghui&rft.date=2017-08-28&rft.volume=56&rft.issue=36&rft.spage=10905&rft.epage=10910&rft.pages=10905-10910&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201705926&rft_dat=%3Cproquest_cross%3E1931244439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931244439&rft_id=info:pmid/28710859&rfr_iscdi=true