Carbon Nitride Aerogels for the Photoredox Conversion of Water
Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. Howe...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2017-08, Vol.56 (36), p.10905-10910 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10910 |
---|---|
container_issue | 36 |
container_start_page | 10905 |
container_title | Angewandte Chemie International Edition |
container_volume | 56 |
creator | Ou, Honghui Yang, Pengju Lin, Lihua Anpo, Masakazu Wang, Xinchen |
description | Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.
Energy storage and conversion: Self‐supported carbon nitride (CN) aerogels synthesized by self‐assembly of low‐dimensional CN nanostructures are capable of catalyzing H2 and H2O2 evolution reactions under visible‐light irradiation. A simple strategy is used to construct 3D CN aerogel networks that show great potential for solar‐to‐chemical energy conversion by artificial photosynthesis. |
doi_str_mv | 10.1002/anie.201705926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920197007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931244439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-73474b03486dbfcdf2ba5e91f1026cf7b23a839e7e76f03bef636a99426a9d073</originalsourceid><addsrcrecordid>eNqF0M9PwjAUB_DGaATRq0ezxIuXYX-tXS8mhKCSEPSg8bh026uMjBXbofLfWwQx8eKlr4fP--bli9A5wX2CMb3WTQV9ionEiaLiAHVJQknMpGSH4c8Zi2WakA468X4efJpicYw6NJUEp4nqopuhdrltomnVuqqEaADOvkLtI2Nd1M4gepzZ1joo7Wc0tM07OF8Fbk30oltwp-jI6NrD2W720PPt6Gl4H08e7sbDwSQuuBQiloxLnmPGU1HmpigNzXUCihiCqSiMzCnTKVMgQQqDWQ5GMKGV4jS8JZash662uUtn31bg22xR-QLqWjdgVz4jKnSgJP6ml3_o3K5cE64LihHKOWcqqP5WFc5678BkS1cttFtnBGebZrNNs9m-2bBwsYtd5Qso9_ynygDUFnxUNaz_icsG0_HoN_wL0xuDRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931244439</pqid></control><display><type>article</type><title>Carbon Nitride Aerogels for the Photoredox Conversion of Water</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ou, Honghui ; Yang, Pengju ; Lin, Lihua ; Anpo, Masakazu ; Wang, Xinchen</creator><creatorcontrib>Ou, Honghui ; Yang, Pengju ; Lin, Lihua ; Anpo, Masakazu ; Wang, Xinchen</creatorcontrib><description>Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.
Energy storage and conversion: Self‐supported carbon nitride (CN) aerogels synthesized by self‐assembly of low‐dimensional CN nanostructures are capable of catalyzing H2 and H2O2 evolution reactions under visible‐light irradiation. A simple strategy is used to construct 3D CN aerogel networks that show great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201705926</identifier><identifier>PMID: 28710859</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Carbon ; Carbon nitride ; carbon nitrides ; Catalytic activity ; Chalcogenides ; Chemical energy ; Colloid chemistry ; Crosslinking ; Electronics industry ; Energy conversion ; Energy storage ; Functional groups ; Hydrogen evolution ; Hydrogen peroxide ; Hydrogen storage ; Irradiation ; Light irradiation ; Metal oxides ; Metals ; Oxides ; Photocatalysis ; Photosynthesis ; Polymers ; Self-assembly ; sol–gel chemistry ; Weight reduction</subject><ispartof>Angewandte Chemie International Edition, 2017-08, Vol.56 (36), p.10905-10910</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-73474b03486dbfcdf2ba5e91f1026cf7b23a839e7e76f03bef636a99426a9d073</citedby><cites>FETCH-LOGICAL-c4766-73474b03486dbfcdf2ba5e91f1026cf7b23a839e7e76f03bef636a99426a9d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201705926$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201705926$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28710859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ou, Honghui</creatorcontrib><creatorcontrib>Yang, Pengju</creatorcontrib><creatorcontrib>Lin, Lihua</creatorcontrib><creatorcontrib>Anpo, Masakazu</creatorcontrib><creatorcontrib>Wang, Xinchen</creatorcontrib><title>Carbon Nitride Aerogels for the Photoredox Conversion of Water</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.
Energy storage and conversion: Self‐supported carbon nitride (CN) aerogels synthesized by self‐assembly of low‐dimensional CN nanostructures are capable of catalyzing H2 and H2O2 evolution reactions under visible‐light irradiation. A simple strategy is used to construct 3D CN aerogel networks that show great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.</description><subject>Aerogels</subject><subject>Carbon</subject><subject>Carbon nitride</subject><subject>carbon nitrides</subject><subject>Catalytic activity</subject><subject>Chalcogenides</subject><subject>Chemical energy</subject><subject>Colloid chemistry</subject><subject>Crosslinking</subject><subject>Electronics industry</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>Hydrogen evolution</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen storage</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Oxides</subject><subject>Photocatalysis</subject><subject>Photosynthesis</subject><subject>Polymers</subject><subject>Self-assembly</subject><subject>sol–gel chemistry</subject><subject>Weight reduction</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0M9PwjAUB_DGaATRq0ezxIuXYX-tXS8mhKCSEPSg8bh026uMjBXbofLfWwQx8eKlr4fP--bli9A5wX2CMb3WTQV9ionEiaLiAHVJQknMpGSH4c8Zi2WakA468X4efJpicYw6NJUEp4nqopuhdrltomnVuqqEaADOvkLtI2Nd1M4gepzZ1joo7Wc0tM07OF8Fbk30oltwp-jI6NrD2W720PPt6Gl4H08e7sbDwSQuuBQiloxLnmPGU1HmpigNzXUCihiCqSiMzCnTKVMgQQqDWQ5GMKGV4jS8JZash662uUtn31bg22xR-QLqWjdgVz4jKnSgJP6ml3_o3K5cE64LihHKOWcqqP5WFc5678BkS1cttFtnBGebZrNNs9m-2bBwsYtd5Qso9_ynygDUFnxUNaz_icsG0_HoN_wL0xuDRQ</recordid><startdate>20170828</startdate><enddate>20170828</enddate><creator>Ou, Honghui</creator><creator>Yang, Pengju</creator><creator>Lin, Lihua</creator><creator>Anpo, Masakazu</creator><creator>Wang, Xinchen</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20170828</creationdate><title>Carbon Nitride Aerogels for the Photoredox Conversion of Water</title><author>Ou, Honghui ; Yang, Pengju ; Lin, Lihua ; Anpo, Masakazu ; Wang, Xinchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-73474b03486dbfcdf2ba5e91f1026cf7b23a839e7e76f03bef636a99426a9d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerogels</topic><topic>Carbon</topic><topic>Carbon nitride</topic><topic>carbon nitrides</topic><topic>Catalytic activity</topic><topic>Chalcogenides</topic><topic>Chemical energy</topic><topic>Colloid chemistry</topic><topic>Crosslinking</topic><topic>Electronics industry</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>Hydrogen evolution</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen storage</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Oxides</topic><topic>Photocatalysis</topic><topic>Photosynthesis</topic><topic>Polymers</topic><topic>Self-assembly</topic><topic>sol–gel chemistry</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Honghui</creatorcontrib><creatorcontrib>Yang, Pengju</creatorcontrib><creatorcontrib>Lin, Lihua</creatorcontrib><creatorcontrib>Anpo, Masakazu</creatorcontrib><creatorcontrib>Wang, Xinchen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Honghui</au><au>Yang, Pengju</au><au>Lin, Lihua</au><au>Anpo, Masakazu</au><au>Wang, Xinchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nitride Aerogels for the Photoredox Conversion of Water</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-08-28</date><risdate>2017</risdate><volume>56</volume><issue>36</issue><spage>10905</spage><epage>10910</epage><pages>10905-10910</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.
Energy storage and conversion: Self‐supported carbon nitride (CN) aerogels synthesized by self‐assembly of low‐dimensional CN nanostructures are capable of catalyzing H2 and H2O2 evolution reactions under visible‐light irradiation. A simple strategy is used to construct 3D CN aerogel networks that show great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28710859</pmid><doi>10.1002/anie.201705926</doi><tpages>6</tpages><edition>International ed. in English</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2017-08, Vol.56 (36), p.10905-10910 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1920197007 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aerogels Carbon Carbon nitride carbon nitrides Catalytic activity Chalcogenides Chemical energy Colloid chemistry Crosslinking Electronics industry Energy conversion Energy storage Functional groups Hydrogen evolution Hydrogen peroxide Hydrogen storage Irradiation Light irradiation Metal oxides Metals Oxides Photocatalysis Photosynthesis Polymers Self-assembly sol–gel chemistry Weight reduction |
title | Carbon Nitride Aerogels for the Photoredox Conversion of Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nitride%20Aerogels%20for%20the%20Photoredox%20Conversion%20of%20Water&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ou,%20Honghui&rft.date=2017-08-28&rft.volume=56&rft.issue=36&rft.spage=10905&rft.epage=10910&rft.pages=10905-10910&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201705926&rft_dat=%3Cproquest_cross%3E1931244439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931244439&rft_id=info:pmid/28710859&rfr_iscdi=true |