Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging

The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2017-07, Vol.67 (2), p.282-293.e7
Hauptverfasser: Nozaki, Tadasu, Imai, Ryosuke, Tanbo, Mai, Nagashima, Ryosuke, Tamura, Sachiko, Tani, Tomomi, Joti, Yasumasa, Tomita, Masaru, Hibino, Kayo, Kanemaki, Masato T., Wendt, Kerstin S., Okada, Yasushi, Nagai, Takeharu, Maeshima, Kazuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 293.e7
container_issue 2
container_start_page 282
container_title Molecular cell
container_volume 67
creator Nozaki, Tadasu
Imai, Ryosuke
Tanbo, Mai
Nagashima, Ryosuke
Tamura, Sachiko
Tani, Tomomi
Joti, Yasumasa
Tomita, Masaru
Hibino, Kayo
Kanemaki, Masato T.
Wendt, Kerstin S.
Okada, Yasushi
Nagai, Takeharu
Maeshima, Kazuhiro
description The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated localization microscopy [PALM]) and single-nucleosome tracking, we developed a nuclear imaging system to visualize the higher-order structures along with their dynamics in live mammalian cells. We demonstrated that nucleosomes form compact domains with a peak diameter of ∼160 nm and move coherently in live cells. The heterochromatin-rich regions showed more domains and less movement. With cell differentiation, the domains became more apparent, with reduced dynamics. Furthermore, various perturbation experiments indicated that they are organized by a combination of factors, including cohesin and nucleosome-nucleosome interactions. Notably, we observed the domains during mitosis, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle. [Display omitted] •We visualized chromatin structures and their dynamics in live mammalian cells•Nucleosomes form compact chromatin domains in live cells and move coherently•The domains are organized by nucleosome-nucleosome interactions and cohesin•The domains exist during mitosis and act as building blocks of chromosomes How a genome is organized and behaves in live cells remains unclear. Nozaki et al. visualized little bunches of chromatin, “chromatin domains,” and their dynamic behavior in live mammalian cells. The domains can work as “Lego blocks” of chromosomes to maintain genetic information throughout the cell cycle.
doi_str_mv 10.1016/j.molcel.2017.06.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920196060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517304458</els_id><sourcerecordid>1920196060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-46e6017bdfa4698139869578f6cf6726ac602f3dfd04aca86bc4b59f4efa8f743</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoTqf_QKSX3rQmXZq0N4JsfgwGg6ngXUjTk5nRNjNpB_PXm7nppVfvOfC-5-NB6IrghGDCbldJY2sFdZJiwhPMEkzyI3RGcMFjShg9PtQpZ9kAnXu_wpjQLC9O0SDNOUl5mp2h98m2lY1R0dwtZWu-ZGdsG1kdjT-cbULXRpOgpvXRAjYga6iichu99Gtw8QK8rfufxMxsIB5DXUfTRi5Nu7xAJ1rWHi4POkRvjw-v4-d4Nn-aju9nsaKcdjFlwML9ZaUlZUVORkXOioznminNeMqkYjjVo0pXmEolc1YqWmaFpqBlrjkdDdHNfu7a2c8efCca4wOWWrZgey9IEfgUDDMcrHRvVc5670CLtTONdFtBsNgxFSuxZyp2TAVmIjANsevDhr5soPoL_UIMhru9AcKfGwNOeGWgVVAZB6oTlTX_b_gGB5yKMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920196060</pqid></control><display><type>article</type><title>Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Nozaki, Tadasu ; Imai, Ryosuke ; Tanbo, Mai ; Nagashima, Ryosuke ; Tamura, Sachiko ; Tani, Tomomi ; Joti, Yasumasa ; Tomita, Masaru ; Hibino, Kayo ; Kanemaki, Masato T. ; Wendt, Kerstin S. ; Okada, Yasushi ; Nagai, Takeharu ; Maeshima, Kazuhiro</creator><creatorcontrib>Nozaki, Tadasu ; Imai, Ryosuke ; Tanbo, Mai ; Nagashima, Ryosuke ; Tamura, Sachiko ; Tani, Tomomi ; Joti, Yasumasa ; Tomita, Masaru ; Hibino, Kayo ; Kanemaki, Masato T. ; Wendt, Kerstin S. ; Okada, Yasushi ; Nagai, Takeharu ; Maeshima, Kazuhiro</creatorcontrib><description>The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated localization microscopy [PALM]) and single-nucleosome tracking, we developed a nuclear imaging system to visualize the higher-order structures along with their dynamics in live mammalian cells. We demonstrated that nucleosomes form compact domains with a peak diameter of ∼160 nm and move coherently in live cells. The heterochromatin-rich regions showed more domains and less movement. With cell differentiation, the domains became more apparent, with reduced dynamics. Furthermore, various perturbation experiments indicated that they are organized by a combination of factors, including cohesin and nucleosome-nucleosome interactions. Notably, we observed the domains during mitosis, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle. [Display omitted] •We visualized chromatin structures and their dynamics in live mammalian cells•Nucleosomes form compact chromatin domains in live cells and move coherently•The domains are organized by nucleosome-nucleosome interactions and cohesin•The domains exist during mitosis and act as building blocks of chromosomes How a genome is organized and behaves in live cells remains unclear. Nozaki et al. visualized little bunches of chromatin, “chromatin domains,” and their dynamic behavior in live mammalian cells. The domains can work as “Lego blocks” of chromosomes to maintain genetic information throughout the cell cycle.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.06.018</identifier><identifier>PMID: 28712725</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Cycle Proteins - metabolism ; Cell Differentiation ; chromatin ; Chromatin Assembly and Disassembly ; chromatin domain ; chromatin dynamics ; Chromosomal Proteins, Non-Histone - metabolism ; chromosome ; Chromosomes, Human ; Cohesins ; HCT116 Cells ; HeLa Cells ; Heterochromatin - chemistry ; Heterochromatin - metabolism ; Humans ; Mice ; Microscopy, Video - methods ; Mitosis ; Motion ; Nucleic Acid Conformation ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; PALM ; Protein Conformation ; RNA Interference ; single-nucleosome tracking ; Structure-Activity Relationship ; Time Factors ; Transcription, Genetic ; Transfection</subject><ispartof>Molecular cell, 2017-07, Vol.67 (2), p.282-293.e7</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-46e6017bdfa4698139869578f6cf6726ac602f3dfd04aca86bc4b59f4efa8f743</citedby><cites>FETCH-LOGICAL-c474t-46e6017bdfa4698139869578f6cf6726ac602f3dfd04aca86bc4b59f4efa8f743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2017.06.018$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28712725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nozaki, Tadasu</creatorcontrib><creatorcontrib>Imai, Ryosuke</creatorcontrib><creatorcontrib>Tanbo, Mai</creatorcontrib><creatorcontrib>Nagashima, Ryosuke</creatorcontrib><creatorcontrib>Tamura, Sachiko</creatorcontrib><creatorcontrib>Tani, Tomomi</creatorcontrib><creatorcontrib>Joti, Yasumasa</creatorcontrib><creatorcontrib>Tomita, Masaru</creatorcontrib><creatorcontrib>Hibino, Kayo</creatorcontrib><creatorcontrib>Kanemaki, Masato T.</creatorcontrib><creatorcontrib>Wendt, Kerstin S.</creatorcontrib><creatorcontrib>Okada, Yasushi</creatorcontrib><creatorcontrib>Nagai, Takeharu</creatorcontrib><creatorcontrib>Maeshima, Kazuhiro</creatorcontrib><title>Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated localization microscopy [PALM]) and single-nucleosome tracking, we developed a nuclear imaging system to visualize the higher-order structures along with their dynamics in live mammalian cells. We demonstrated that nucleosomes form compact domains with a peak diameter of ∼160 nm and move coherently in live cells. The heterochromatin-rich regions showed more domains and less movement. With cell differentiation, the domains became more apparent, with reduced dynamics. Furthermore, various perturbation experiments indicated that they are organized by a combination of factors, including cohesin and nucleosome-nucleosome interactions. Notably, we observed the domains during mitosis, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle. [Display omitted] •We visualized chromatin structures and their dynamics in live mammalian cells•Nucleosomes form compact chromatin domains in live cells and move coherently•The domains are organized by nucleosome-nucleosome interactions and cohesin•The domains exist during mitosis and act as building blocks of chromosomes How a genome is organized and behaves in live cells remains unclear. Nozaki et al. visualized little bunches of chromatin, “chromatin domains,” and their dynamic behavior in live mammalian cells. The domains can work as “Lego blocks” of chromosomes to maintain genetic information throughout the cell cycle.</description><subject>Animals</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation</subject><subject>chromatin</subject><subject>Chromatin Assembly and Disassembly</subject><subject>chromatin domain</subject><subject>chromatin dynamics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>chromosome</subject><subject>Chromosomes, Human</subject><subject>Cohesins</subject><subject>HCT116 Cells</subject><subject>HeLa Cells</subject><subject>Heterochromatin - chemistry</subject><subject>Heterochromatin - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Microscopy, Video - methods</subject><subject>Mitosis</subject><subject>Motion</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>PALM</subject><subject>Protein Conformation</subject><subject>RNA Interference</subject><subject>single-nucleosome tracking</subject><subject>Structure-Activity Relationship</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMoTqf_QKSX3rQmXZq0N4JsfgwGg6ngXUjTk5nRNjNpB_PXm7nppVfvOfC-5-NB6IrghGDCbldJY2sFdZJiwhPMEkzyI3RGcMFjShg9PtQpZ9kAnXu_wpjQLC9O0SDNOUl5mp2h98m2lY1R0dwtZWu-ZGdsG1kdjT-cbULXRpOgpvXRAjYga6iichu99Gtw8QK8rfufxMxsIB5DXUfTRi5Nu7xAJ1rWHi4POkRvjw-v4-d4Nn-aju9nsaKcdjFlwML9ZaUlZUVORkXOioznminNeMqkYjjVo0pXmEolc1YqWmaFpqBlrjkdDdHNfu7a2c8efCca4wOWWrZgey9IEfgUDDMcrHRvVc5670CLtTONdFtBsNgxFSuxZyp2TAVmIjANsevDhr5soPoL_UIMhru9AcKfGwNOeGWgVVAZB6oTlTX_b_gGB5yKMA</recordid><startdate>20170720</startdate><enddate>20170720</enddate><creator>Nozaki, Tadasu</creator><creator>Imai, Ryosuke</creator><creator>Tanbo, Mai</creator><creator>Nagashima, Ryosuke</creator><creator>Tamura, Sachiko</creator><creator>Tani, Tomomi</creator><creator>Joti, Yasumasa</creator><creator>Tomita, Masaru</creator><creator>Hibino, Kayo</creator><creator>Kanemaki, Masato T.</creator><creator>Wendt, Kerstin S.</creator><creator>Okada, Yasushi</creator><creator>Nagai, Takeharu</creator><creator>Maeshima, Kazuhiro</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170720</creationdate><title>Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging</title><author>Nozaki, Tadasu ; Imai, Ryosuke ; Tanbo, Mai ; Nagashima, Ryosuke ; Tamura, Sachiko ; Tani, Tomomi ; Joti, Yasumasa ; Tomita, Masaru ; Hibino, Kayo ; Kanemaki, Masato T. ; Wendt, Kerstin S. ; Okada, Yasushi ; Nagai, Takeharu ; Maeshima, Kazuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-46e6017bdfa4698139869578f6cf6726ac602f3dfd04aca86bc4b59f4efa8f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation</topic><topic>chromatin</topic><topic>Chromatin Assembly and Disassembly</topic><topic>chromatin domain</topic><topic>chromatin dynamics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>chromosome</topic><topic>Chromosomes, Human</topic><topic>Cohesins</topic><topic>HCT116 Cells</topic><topic>HeLa Cells</topic><topic>Heterochromatin - chemistry</topic><topic>Heterochromatin - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Microscopy, Video - methods</topic><topic>Mitosis</topic><topic>Motion</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>PALM</topic><topic>Protein Conformation</topic><topic>RNA Interference</topic><topic>single-nucleosome tracking</topic><topic>Structure-Activity Relationship</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nozaki, Tadasu</creatorcontrib><creatorcontrib>Imai, Ryosuke</creatorcontrib><creatorcontrib>Tanbo, Mai</creatorcontrib><creatorcontrib>Nagashima, Ryosuke</creatorcontrib><creatorcontrib>Tamura, Sachiko</creatorcontrib><creatorcontrib>Tani, Tomomi</creatorcontrib><creatorcontrib>Joti, Yasumasa</creatorcontrib><creatorcontrib>Tomita, Masaru</creatorcontrib><creatorcontrib>Hibino, Kayo</creatorcontrib><creatorcontrib>Kanemaki, Masato T.</creatorcontrib><creatorcontrib>Wendt, Kerstin S.</creatorcontrib><creatorcontrib>Okada, Yasushi</creatorcontrib><creatorcontrib>Nagai, Takeharu</creatorcontrib><creatorcontrib>Maeshima, Kazuhiro</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nozaki, Tadasu</au><au>Imai, Ryosuke</au><au>Tanbo, Mai</au><au>Nagashima, Ryosuke</au><au>Tamura, Sachiko</au><au>Tani, Tomomi</au><au>Joti, Yasumasa</au><au>Tomita, Masaru</au><au>Hibino, Kayo</au><au>Kanemaki, Masato T.</au><au>Wendt, Kerstin S.</au><au>Okada, Yasushi</au><au>Nagai, Takeharu</au><au>Maeshima, Kazuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2017-07-20</date><risdate>2017</risdate><volume>67</volume><issue>2</issue><spage>282</spage><epage>293.e7</epage><pages>282-293.e7</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated localization microscopy [PALM]) and single-nucleosome tracking, we developed a nuclear imaging system to visualize the higher-order structures along with their dynamics in live mammalian cells. We demonstrated that nucleosomes form compact domains with a peak diameter of ∼160 nm and move coherently in live cells. The heterochromatin-rich regions showed more domains and less movement. With cell differentiation, the domains became more apparent, with reduced dynamics. Furthermore, various perturbation experiments indicated that they are organized by a combination of factors, including cohesin and nucleosome-nucleosome interactions. Notably, we observed the domains during mitosis, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle. [Display omitted] •We visualized chromatin structures and their dynamics in live mammalian cells•Nucleosomes form compact chromatin domains in live cells and move coherently•The domains are organized by nucleosome-nucleosome interactions and cohesin•The domains exist during mitosis and act as building blocks of chromosomes How a genome is organized and behaves in live cells remains unclear. Nozaki et al. visualized little bunches of chromatin, “chromatin domains,” and their dynamic behavior in live mammalian cells. The domains can work as “Lego blocks” of chromosomes to maintain genetic information throughout the cell cycle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28712725</pmid><doi>10.1016/j.molcel.2017.06.018</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2017-07, Vol.67 (2), p.282-293.e7
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_1920196060
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Animals
Cell Cycle Proteins - metabolism
Cell Differentiation
chromatin
Chromatin Assembly and Disassembly
chromatin domain
chromatin dynamics
Chromosomal Proteins, Non-Histone - metabolism
chromosome
Chromosomes, Human
Cohesins
HCT116 Cells
HeLa Cells
Heterochromatin - chemistry
Heterochromatin - metabolism
Humans
Mice
Microscopy, Video - methods
Mitosis
Motion
Nucleic Acid Conformation
Nucleosomes - chemistry
Nucleosomes - metabolism
PALM
Protein Conformation
RNA Interference
single-nucleosome tracking
Structure-Activity Relationship
Time Factors
Transcription, Genetic
Transfection
title Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Organization%20of%20Chromatin%20Domains%20Revealed%20by%20Super-Resolution%20Live-Cell%20Imaging&rft.jtitle=Molecular%20cell&rft.au=Nozaki,%20Tadasu&rft.date=2017-07-20&rft.volume=67&rft.issue=2&rft.spage=282&rft.epage=293.e7&rft.pages=282-293.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.06.018&rft_dat=%3Cproquest_cross%3E1920196060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920196060&rft_id=info:pmid/28712725&rft_els_id=S1097276517304458&rfr_iscdi=true