Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy

Solvation and transport of excess protons in aqueous systems play a fundamental role in acid-base chemistry and biochemical processes. We mapped ultrafast proton excursions along the proton transfer coordinate by means of two-dimensional infrared spectroscopy, both in bulk water and in a Zundel cati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-08, Vol.357 (6350), p.491-495
Hauptverfasser: Dahms, Fabian, Fingerhut, Benjamin P., Nibbering, Erik T. J., Pines, Ehud, Elsaesser, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 6350
container_start_page 491
container_title Science (American Association for the Advancement of Science)
container_volume 357
creator Dahms, Fabian
Fingerhut, Benjamin P.
Nibbering, Erik T. J.
Pines, Ehud
Elsaesser, Thomas
description Solvation and transport of excess protons in aqueous systems play a fundamental role in acid-base chemistry and biochemical processes. We mapped ultrafast proton excursions along the proton transfer coordinate by means of two-dimensional infrared spectroscopy, both in bulk water and in a Zundel cation (H₅O₂)⁺ motif selectively prepared in acetonitrile. Electric fields from the environment and stochastic hydrogen bond motions induce fluctuations of the proton double-minimum potential. Within the lifetime of a particular hydration geometry, the proton explores a multitude of positions on a sub-100-femtosecond time scale. The proton transfer vibration is strongly damped by its 20- to 40-femtosecond population decay. Our results suggest a central role of Zundel-like geometries in aqueous proton solvation and transport.
doi_str_mv 10.1126/science.aan5144
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920192492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399564</jstor_id><sourcerecordid>26399564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-8487261be52839873a03a94c50645cb108ca06f8d8ad422d74e5017273165c9e3</originalsourceid><addsrcrecordid>eNpdkElLxDAUgIMoOi5nT0rAi5dq1jY5yrgNDAii55JJX7VD29QkBfvvjcyo4CE8yPve9iF0SskVpSy_DraB3sKVMb2kQuygGSVaZpoRvotmhPA8U6SQB-gwhDUhKaf5PjpgqiBSKzVDZmn8G2SmG9omjhXg6E0favC4c7FxPXY1fp8qbyJUGD4thIAH76LrA-7MMKTf1YTHNpXVJkTMbvHiGYcBbPQuWDdMx2ivNm2Ak208Qq_3dy_zx2z59LCY3ywzKzSNmRKqYDldgWSKa1VwQ7jRwkqSC2lXlChrSF6rSplKMFYVAiShBSs4zaXVwI_Q5aZvWu9jhBDLrgkW2tb04MZQ0iQlPaFZQi_-oWs3-j5tl6hCaC2lUom63lA2XRI81OXgm874qaSk_LZfbu2XW_up4nzbd1x1UP3yP7oTcLYB1iE6_5fPeZqZC_4FadKLdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974995588</pqid></control><display><type>article</type><title>Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy</title><source>American Association for the Advancement of Science</source><source>JSTOR</source><creator>Dahms, Fabian ; Fingerhut, Benjamin P. ; Nibbering, Erik T. J. ; Pines, Ehud ; Elsaesser, Thomas</creator><creatorcontrib>Dahms, Fabian ; Fingerhut, Benjamin P. ; Nibbering, Erik T. J. ; Pines, Ehud ; Elsaesser, Thomas</creatorcontrib><description>Solvation and transport of excess protons in aqueous systems play a fundamental role in acid-base chemistry and biochemical processes. We mapped ultrafast proton excursions along the proton transfer coordinate by means of two-dimensional infrared spectroscopy, both in bulk water and in a Zundel cation (H₅O₂)⁺ motif selectively prepared in acetonitrile. Electric fields from the environment and stochastic hydrogen bond motions induce fluctuations of the proton double-minimum potential. Within the lifetime of a particular hydration geometry, the proton explores a multitude of positions on a sub-100-femtosecond time scale. The proton transfer vibration is strongly damped by its 20- to 40-femtosecond population decay. Our results suggest a central role of Zundel-like geometries in aqueous proton solvation and transport.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aan5144</identifier><identifier>PMID: 28705988</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Acetonitrile ; Acids ; Chemical bonds ; Homing ; Hydrogen bonding ; Hydrogen bonds ; Infrared spectroscopy ; Literary Devices ; Organic Chemistry ; Persistence ; Protons ; Solvation ; Spectroscopy ; Stochasticity ; Time ; Transport ; Vibration ; Water ; Water chemistry</subject><ispartof>Science (American Association for the Advancement of Science), 2017-08, Vol.357 (6350), p.491-495</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-8487261be52839873a03a94c50645cb108ca06f8d8ad422d74e5017273165c9e3</citedby><cites>FETCH-LOGICAL-c491t-8487261be52839873a03a94c50645cb108ca06f8d8ad422d74e5017273165c9e3</cites><orcidid>0000-0001-5874-8052 ; 0000-0002-8532-6899 ; 0000-0003-2622-0098 ; 0000-0003-3056-6665 ; 0000-0002-3857-5403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399564$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399564$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28705988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahms, Fabian</creatorcontrib><creatorcontrib>Fingerhut, Benjamin P.</creatorcontrib><creatorcontrib>Nibbering, Erik T. J.</creatorcontrib><creatorcontrib>Pines, Ehud</creatorcontrib><creatorcontrib>Elsaesser, Thomas</creatorcontrib><title>Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Solvation and transport of excess protons in aqueous systems play a fundamental role in acid-base chemistry and biochemical processes. We mapped ultrafast proton excursions along the proton transfer coordinate by means of two-dimensional infrared spectroscopy, both in bulk water and in a Zundel cation (H₅O₂)⁺ motif selectively prepared in acetonitrile. Electric fields from the environment and stochastic hydrogen bond motions induce fluctuations of the proton double-minimum potential. Within the lifetime of a particular hydration geometry, the proton explores a multitude of positions on a sub-100-femtosecond time scale. The proton transfer vibration is strongly damped by its 20- to 40-femtosecond population decay. Our results suggest a central role of Zundel-like geometries in aqueous proton solvation and transport.</description><subject>Acetonitrile</subject><subject>Acids</subject><subject>Chemical bonds</subject><subject>Homing</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Infrared spectroscopy</subject><subject>Literary Devices</subject><subject>Organic Chemistry</subject><subject>Persistence</subject><subject>Protons</subject><subject>Solvation</subject><subject>Spectroscopy</subject><subject>Stochasticity</subject><subject>Time</subject><subject>Transport</subject><subject>Vibration</subject><subject>Water</subject><subject>Water chemistry</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkElLxDAUgIMoOi5nT0rAi5dq1jY5yrgNDAii55JJX7VD29QkBfvvjcyo4CE8yPve9iF0SskVpSy_DraB3sKVMb2kQuygGSVaZpoRvotmhPA8U6SQB-gwhDUhKaf5PjpgqiBSKzVDZmn8G2SmG9omjhXg6E0favC4c7FxPXY1fp8qbyJUGD4thIAH76LrA-7MMKTf1YTHNpXVJkTMbvHiGYcBbPQuWDdMx2ivNm2Ak208Qq_3dy_zx2z59LCY3ywzKzSNmRKqYDldgWSKa1VwQ7jRwkqSC2lXlChrSF6rSplKMFYVAiShBSs4zaXVwI_Q5aZvWu9jhBDLrgkW2tb04MZQ0iQlPaFZQi_-oWs3-j5tl6hCaC2lUom63lA2XRI81OXgm874qaSk_LZfbu2XW_up4nzbd1x1UP3yP7oTcLYB1iE6_5fPeZqZC_4FadKLdw</recordid><startdate>20170804</startdate><enddate>20170804</enddate><creator>Dahms, Fabian</creator><creator>Fingerhut, Benjamin P.</creator><creator>Nibbering, Erik T. J.</creator><creator>Pines, Ehud</creator><creator>Elsaesser, Thomas</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5874-8052</orcidid><orcidid>https://orcid.org/0000-0002-8532-6899</orcidid><orcidid>https://orcid.org/0000-0003-2622-0098</orcidid><orcidid>https://orcid.org/0000-0003-3056-6665</orcidid><orcidid>https://orcid.org/0000-0002-3857-5403</orcidid></search><sort><creationdate>20170804</creationdate><title>Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy</title><author>Dahms, Fabian ; Fingerhut, Benjamin P. ; Nibbering, Erik T. J. ; Pines, Ehud ; Elsaesser, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-8487261be52839873a03a94c50645cb108ca06f8d8ad422d74e5017273165c9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetonitrile</topic><topic>Acids</topic><topic>Chemical bonds</topic><topic>Homing</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Infrared spectroscopy</topic><topic>Literary Devices</topic><topic>Organic Chemistry</topic><topic>Persistence</topic><topic>Protons</topic><topic>Solvation</topic><topic>Spectroscopy</topic><topic>Stochasticity</topic><topic>Time</topic><topic>Transport</topic><topic>Vibration</topic><topic>Water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahms, Fabian</creatorcontrib><creatorcontrib>Fingerhut, Benjamin P.</creatorcontrib><creatorcontrib>Nibbering, Erik T. J.</creatorcontrib><creatorcontrib>Pines, Ehud</creatorcontrib><creatorcontrib>Elsaesser, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahms, Fabian</au><au>Fingerhut, Benjamin P.</au><au>Nibbering, Erik T. J.</au><au>Pines, Ehud</au><au>Elsaesser, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-08-04</date><risdate>2017</risdate><volume>357</volume><issue>6350</issue><spage>491</spage><epage>495</epage><pages>491-495</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Solvation and transport of excess protons in aqueous systems play a fundamental role in acid-base chemistry and biochemical processes. We mapped ultrafast proton excursions along the proton transfer coordinate by means of two-dimensional infrared spectroscopy, both in bulk water and in a Zundel cation (H₅O₂)⁺ motif selectively prepared in acetonitrile. Electric fields from the environment and stochastic hydrogen bond motions induce fluctuations of the proton double-minimum potential. Within the lifetime of a particular hydration geometry, the proton explores a multitude of positions on a sub-100-femtosecond time scale. The proton transfer vibration is strongly damped by its 20- to 40-femtosecond population decay. Our results suggest a central role of Zundel-like geometries in aqueous proton solvation and transport.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28705988</pmid><doi>10.1126/science.aan5144</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5874-8052</orcidid><orcidid>https://orcid.org/0000-0002-8532-6899</orcidid><orcidid>https://orcid.org/0000-0003-2622-0098</orcidid><orcidid>https://orcid.org/0000-0003-3056-6665</orcidid><orcidid>https://orcid.org/0000-0002-3857-5403</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-08, Vol.357 (6350), p.491-495
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1920192492
source American Association for the Advancement of Science; JSTOR
subjects Acetonitrile
Acids
Chemical bonds
Homing
Hydrogen bonding
Hydrogen bonds
Infrared spectroscopy
Literary Devices
Organic Chemistry
Persistence
Protons
Solvation
Spectroscopy
Stochasticity
Time
Transport
Vibration
Water
Water chemistry
title Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-amplitude%20transfer%20motion%20of%20hydrated%20excess%20protons%20mapped%20by%20ultrafast%202D%20IR%20spectroscopy&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Dahms,%20Fabian&rft.date=2017-08-04&rft.volume=357&rft.issue=6350&rft.spage=491&rft.epage=495&rft.pages=491-495&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aan5144&rft_dat=%3Cjstor_proqu%3E26399564%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974995588&rft_id=info:pmid/28705988&rft_jstor_id=26399564&rfr_iscdi=true