Comparison of SIR-C SAR wavenumber spectra with WAM model predictions

During April and October of 1994, the Space Radar Laboratory (SRL) flew on the space shuttle Endeavour at the relatively low altitude of 215 km. Using horizontal polarization, C‐band signal from the spaceborne imaging radar (SIR‐C), an onboard processor, designed and fabricated by the Johns Hopkins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research, Washington, DC Washington, DC, 1998-08, Vol.103 (C9), p.18815-18825
Hauptverfasser: Monaldo, Frank M., Beal, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18825
container_issue C9
container_start_page 18815
container_title Journal of Geophysical Research, Washington, DC
container_volume 103
creator Monaldo, Frank M.
Beal, Robert C.
description During April and October of 1994, the Space Radar Laboratory (SRL) flew on the space shuttle Endeavour at the relatively low altitude of 215 km. Using horizontal polarization, C‐band signal from the spaceborne imaging radar (SIR‐C), an onboard processor, designed and fabricated by the Johns Hopkins University Applied Physics Laboratory, formed synthetic aperture radar (SAR) images and computed over 100,000 corresponding image spectra. The low altitude, small look angle (23°–25°) and the use of horizontal polarization minimized both the loss of azimuth resolution caused by ocean surface motion and the relative contribution of the hydrodynamic component of the modulation transfer function. As a result, the SIR‐C SAR was able to image azimuth‐traveling waves with minimal distortion. After using linear inversions to convert image spectra to wave height‐variance spectra, the distributions of wavenumber and propagation direction from the processor‐derived spectra were consistent with wave model (WAM) predictions. Although the SAR wave height‐variance spectra underestimated significant wave height (SWH) at the higher SWHs, this error is compensated for by a simple linear correction. We collected 57 pairs of crossover spectra where the ground track pairs were nearly orthogonal. The crossovers were separated by 6 hours. Crossover comparisons show that the retrieved spectral parameters are independent of wave propagation direction. At this altitude and configuration, the SAR range and azimuth responses are nearly equal. The real‐time processing of spaceborne SAR data to produce accurate estimates of wavenumber, propagation direction, and SWH is clearly feasible with the orbital and instrument geometry of SIR‐C.
doi_str_mv 10.1029/98JC01457
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919972069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18115418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4045-8203e491fee3ce8400165d10220f54549c24dab95195145d6ffb370fc38b3f0e3</originalsourceid><addsrcrecordid>eNp9kE9PwkAQxTdGEwly8Bvsyeihsn_b7pFUQAhqBJXjprSzsdrSultEvr1rMNx0Mskkk9-bN3kInVNyTQlTfRVPE0KFjI5Qh1EZBowRdow6fhcHhLHoFPWceyO-hAwFoR00TOqqSW3h6jWuDV5M5kGCF4M53qafsN5UK7DYNZC1NsXbon3Fy8EdruocStxYyIusLeq1O0MnJi0d9H5nFz2Phk_JbTB7GE-SwSzIhHcMYkY4CEUNAM8gFoTQUOb-dUaMFFKojIk8XSlJfQuZh8aseERMxuMVNwR4F13u7za2_tiAa3VVuAzKMl1DvXGaKqpUxEioPHrxPxpTKgWNPXi1BzNbO2fB6MYWVWp3mhL9E6s-xOrZ_p7dFiXs_gb1dDxPIsGkVwR7ReFa-DooUvuuw4hHUi_vxzrkanzz8pjoEf8G8o2D4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18115418</pqid></control><display><type>article</type><title>Comparison of SIR-C SAR wavenumber spectra with WAM model predictions</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Monaldo, Frank M. ; Beal, Robert C.</creator><creatorcontrib>Monaldo, Frank M. ; Beal, Robert C.</creatorcontrib><description>During April and October of 1994, the Space Radar Laboratory (SRL) flew on the space shuttle Endeavour at the relatively low altitude of 215 km. Using horizontal polarization, C‐band signal from the spaceborne imaging radar (SIR‐C), an onboard processor, designed and fabricated by the Johns Hopkins University Applied Physics Laboratory, formed synthetic aperture radar (SAR) images and computed over 100,000 corresponding image spectra. The low altitude, small look angle (23°–25°) and the use of horizontal polarization minimized both the loss of azimuth resolution caused by ocean surface motion and the relative contribution of the hydrodynamic component of the modulation transfer function. As a result, the SIR‐C SAR was able to image azimuth‐traveling waves with minimal distortion. After using linear inversions to convert image spectra to wave height‐variance spectra, the distributions of wavenumber and propagation direction from the processor‐derived spectra were consistent with wave model (WAM) predictions. Although the SAR wave height‐variance spectra underestimated significant wave height (SWH) at the higher SWHs, this error is compensated for by a simple linear correction. We collected 57 pairs of crossover spectra where the ground track pairs were nearly orthogonal. The crossovers were separated by 6 hours. Crossover comparisons show that the retrieved spectral parameters are independent of wave propagation direction. At this altitude and configuration, the SAR range and azimuth responses are nearly equal. The real‐time processing of spaceborne SAR data to produce accurate estimates of wavenumber, propagation direction, and SWH is clearly feasible with the orbital and instrument geometry of SIR‐C.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/98JC01457</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Marine</subject><ispartof>Journal of Geophysical Research, Washington, DC, 1998-08, Vol.103 (C9), p.18815-18825</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4045-8203e491fee3ce8400165d10220f54549c24dab95195145d6ffb370fc38b3f0e3</citedby><cites>FETCH-LOGICAL-c4045-8203e491fee3ce8400165d10220f54549c24dab95195145d6ffb370fc38b3f0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F98JC01457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F98JC01457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Monaldo, Frank M.</creatorcontrib><creatorcontrib>Beal, Robert C.</creatorcontrib><title>Comparison of SIR-C SAR wavenumber spectra with WAM model predictions</title><title>Journal of Geophysical Research, Washington, DC</title><addtitle>J. Geophys. Res</addtitle><description>During April and October of 1994, the Space Radar Laboratory (SRL) flew on the space shuttle Endeavour at the relatively low altitude of 215 km. Using horizontal polarization, C‐band signal from the spaceborne imaging radar (SIR‐C), an onboard processor, designed and fabricated by the Johns Hopkins University Applied Physics Laboratory, formed synthetic aperture radar (SAR) images and computed over 100,000 corresponding image spectra. The low altitude, small look angle (23°–25°) and the use of horizontal polarization minimized both the loss of azimuth resolution caused by ocean surface motion and the relative contribution of the hydrodynamic component of the modulation transfer function. As a result, the SIR‐C SAR was able to image azimuth‐traveling waves with minimal distortion. After using linear inversions to convert image spectra to wave height‐variance spectra, the distributions of wavenumber and propagation direction from the processor‐derived spectra were consistent with wave model (WAM) predictions. Although the SAR wave height‐variance spectra underestimated significant wave height (SWH) at the higher SWHs, this error is compensated for by a simple linear correction. We collected 57 pairs of crossover spectra where the ground track pairs were nearly orthogonal. The crossovers were separated by 6 hours. Crossover comparisons show that the retrieved spectral parameters are independent of wave propagation direction. At this altitude and configuration, the SAR range and azimuth responses are nearly equal. The real‐time processing of spaceborne SAR data to produce accurate estimates of wavenumber, propagation direction, and SWH is clearly feasible with the orbital and instrument geometry of SIR‐C.</description><subject>Marine</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwkAQxTdGEwly8Bvsyeihsn_b7pFUQAhqBJXjprSzsdrSultEvr1rMNx0Mskkk9-bN3kInVNyTQlTfRVPE0KFjI5Qh1EZBowRdow6fhcHhLHoFPWceyO-hAwFoR00TOqqSW3h6jWuDV5M5kGCF4M53qafsN5UK7DYNZC1NsXbon3Fy8EdruocStxYyIusLeq1O0MnJi0d9H5nFz2Phk_JbTB7GE-SwSzIhHcMYkY4CEUNAM8gFoTQUOb-dUaMFFKojIk8XSlJfQuZh8aseERMxuMVNwR4F13u7za2_tiAa3VVuAzKMl1DvXGaKqpUxEioPHrxPxpTKgWNPXi1BzNbO2fB6MYWVWp3mhL9E6s-xOrZ_p7dFiXs_gb1dDxPIsGkVwR7ReFa-DooUvuuw4hHUi_vxzrkanzz8pjoEf8G8o2D4A</recordid><startdate>19980815</startdate><enddate>19980815</enddate><creator>Monaldo, Frank M.</creator><creator>Beal, Robert C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>19980815</creationdate><title>Comparison of SIR-C SAR wavenumber spectra with WAM model predictions</title><author>Monaldo, Frank M. ; Beal, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4045-8203e491fee3ce8400165d10220f54549c24dab95195145d6ffb370fc38b3f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monaldo, Frank M.</creatorcontrib><creatorcontrib>Beal, Robert C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research, Washington, DC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monaldo, Frank M.</au><au>Beal, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of SIR-C SAR wavenumber spectra with WAM model predictions</atitle><jtitle>Journal of Geophysical Research, Washington, DC</jtitle><addtitle>J. Geophys. Res</addtitle><date>1998-08-15</date><risdate>1998</risdate><volume>103</volume><issue>C9</issue><spage>18815</spage><epage>18825</epage><pages>18815-18825</pages><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>During April and October of 1994, the Space Radar Laboratory (SRL) flew on the space shuttle Endeavour at the relatively low altitude of 215 km. Using horizontal polarization, C‐band signal from the spaceborne imaging radar (SIR‐C), an onboard processor, designed and fabricated by the Johns Hopkins University Applied Physics Laboratory, formed synthetic aperture radar (SAR) images and computed over 100,000 corresponding image spectra. The low altitude, small look angle (23°–25°) and the use of horizontal polarization minimized both the loss of azimuth resolution caused by ocean surface motion and the relative contribution of the hydrodynamic component of the modulation transfer function. As a result, the SIR‐C SAR was able to image azimuth‐traveling waves with minimal distortion. After using linear inversions to convert image spectra to wave height‐variance spectra, the distributions of wavenumber and propagation direction from the processor‐derived spectra were consistent with wave model (WAM) predictions. Although the SAR wave height‐variance spectra underestimated significant wave height (SWH) at the higher SWHs, this error is compensated for by a simple linear correction. We collected 57 pairs of crossover spectra where the ground track pairs were nearly orthogonal. The crossovers were separated by 6 hours. Crossover comparisons show that the retrieved spectral parameters are independent of wave propagation direction. At this altitude and configuration, the SAR range and azimuth responses are nearly equal. The real‐time processing of spaceborne SAR data to produce accurate estimates of wavenumber, propagation direction, and SWH is clearly feasible with the orbital and instrument geometry of SIR‐C.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/98JC01457</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, Washington, DC, 1998-08, Vol.103 (C9), p.18815-18825
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_1919972069
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Marine
title Comparison of SIR-C SAR wavenumber spectra with WAM model predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20SIR-C%20SAR%20wavenumber%20spectra%20with%20WAM%20model%20predictions&rft.jtitle=Journal%20of%20Geophysical%20Research,%20Washington,%20DC&rft.au=Monaldo,%20Frank%20M.&rft.date=1998-08-15&rft.volume=103&rft.issue=C9&rft.spage=18815&rft.epage=18825&rft.pages=18815-18825&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/98JC01457&rft_dat=%3Cproquest_cross%3E18115418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18115418&rft_id=info:pmid/&rfr_iscdi=true