Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid
•The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa.•Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer.•Lifecycle analysis of chiral pollutants needs more attention in environmental assessment. Enantioselective...
Gespeichert in:
Veröffentlicht in: | Aquatic toxicology 2014-01, Vol.146, p.12-19 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 12 |
container_title | Aquatic toxicology |
container_volume | 146 |
creator | Ye, Jing Zhang, Ying Chen, Shengwen Liu, Chaonan Zhu, Yongqiang Liu, Weiping |
description | •The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa.•Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer.•Lifecycle analysis of chiral pollutants needs more attention in environmental assessment.
Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides. |
doi_str_mv | 10.1016/j.aquatox.2013.10.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919971695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166445X13002932</els_id><sourcerecordid>1490751454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8926e0d90b1cacdaccb32ea74d592083e3375d2e89ad4a854da853a78f3497843</originalsourceid><addsrcrecordid>eNqFkUtvEzEQgC0EoqHwE0B7Qeplg5-76xNCVYFKRVxA4mZN7NnW0WadejZVeuWX4yUpHOODLY-_ecgfY28FXwoumg_rJdzvYEr7peRCldiSS_WMLUTX2loYoZ-zReGaWmvz64y9IlrzsqS2L9mZ1FJzwc2C_b4aYZxiIhzQT_EBK38H4y1SFccq7WOAv0GaMhJVMIaqtCxPufBAOFPfos_JP9IUC4B5dxvHRFDhfluqznwpGTMM1R3mVfQxYBWiH1KfthWU62v2ooeB8M3xPGc_P1_9uPxa33z_cn356ab2uhFT3VnZIA-Wr4QHH8D7lZIIrQ7GSt4pVKo1QWJnIWjojA5lU9B2vdK27bQ6ZxeHutuc7ndIk9tE8jgMMGLakRNWWNuKxprTaKMMF62S8jSqLW-LDjMPYA5o-S-ijL3b5riB_OgEd7NUt3ZHqW6WOoeL1JL37thit9pg-Jf1ZLEA748AkIehzzD6SP-5Tqim06JwHw8clm9-iJgd-YijxxBzse9CiidG-QPVa8SI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490751454</pqid></control><display><type>article</type><title>Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ye, Jing ; Zhang, Ying ; Chen, Shengwen ; Liu, Chaonan ; Zhu, Yongqiang ; Liu, Weiping</creator><creatorcontrib>Ye, Jing ; Zhang, Ying ; Chen, Shengwen ; Liu, Chaonan ; Zhu, Yongqiang ; Liu, Weiping</creatorcontrib><description>•The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa.•Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer.•Lifecycle analysis of chiral pollutants needs more attention in environmental assessment.
Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides.</description><identifier>ISSN: 0166-445X</identifier><identifier>EISSN: 1879-1514</identifier><identifier>DOI: 10.1016/j.aquatox.2013.10.023</identifier><identifier>PMID: 24240105</identifier><identifier>CODEN: AQTODG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Action of physical and chemical agents on bacteria ; Animal, plant and microbial ecology ; Applied ecology ; Bacteriology ; Biological and medical sciences ; Diclofop acid ; Ecotoxicology, biological effects of pollution ; Enantioselectivity ; Environmental toxicology ; Fundamental and applied biological sciences. Psychology ; Microbiology ; Microcystins - analysis ; Microcystins - metabolism ; Microcystis - drug effects ; Microcystis aeruginosa ; Oxidative Stress - drug effects ; Phenyl Ethers - toxicity ; Propionates - toxicity ; Reactive Oxygen Species - metabolism ; Superoxide Dismutase - metabolism ; Toxin release ; Water Pollutants, Chemical - toxicity</subject><ispartof>Aquatic toxicology, 2014-01, Vol.146, p.12-19</ispartof><rights>2013</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8926e0d90b1cacdaccb32ea74d592083e3375d2e89ad4a854da853a78f3497843</citedby><cites>FETCH-LOGICAL-c461t-8926e0d90b1cacdaccb32ea74d592083e3375d2e89ad4a854da853a78f3497843</cites><orcidid>0000-0002-0591-6566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166445X13002932$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28136841$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24240105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Chen, Shengwen</creatorcontrib><creatorcontrib>Liu, Chaonan</creatorcontrib><creatorcontrib>Zhu, Yongqiang</creatorcontrib><creatorcontrib>Liu, Weiping</creatorcontrib><title>Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid</title><title>Aquatic toxicology</title><addtitle>Aquat Toxicol</addtitle><description>•The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa.•Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer.•Lifecycle analysis of chiral pollutants needs more attention in environmental assessment.
Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides.</description><subject>Action of physical and chemical agents on bacteria</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Diclofop acid</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Enantioselectivity</subject><subject>Environmental toxicology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Microbiology</subject><subject>Microcystins - analysis</subject><subject>Microcystins - metabolism</subject><subject>Microcystis - drug effects</subject><subject>Microcystis aeruginosa</subject><subject>Oxidative Stress - drug effects</subject><subject>Phenyl Ethers - toxicity</subject><subject>Propionates - toxicity</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Toxin release</subject><subject>Water Pollutants, Chemical - toxicity</subject><issn>0166-445X</issn><issn>1879-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEQgC0EoqHwE0B7Qeplg5-76xNCVYFKRVxA4mZN7NnW0WadejZVeuWX4yUpHOODLY-_ecgfY28FXwoumg_rJdzvYEr7peRCldiSS_WMLUTX2loYoZ-zReGaWmvz64y9IlrzsqS2L9mZ1FJzwc2C_b4aYZxiIhzQT_EBK38H4y1SFccq7WOAv0GaMhJVMIaqtCxPufBAOFPfos_JP9IUC4B5dxvHRFDhfluqznwpGTMM1R3mVfQxYBWiH1KfthWU62v2ooeB8M3xPGc_P1_9uPxa33z_cn356ab2uhFT3VnZIA-Wr4QHH8D7lZIIrQ7GSt4pVKo1QWJnIWjojA5lU9B2vdK27bQ6ZxeHutuc7ndIk9tE8jgMMGLakRNWWNuKxprTaKMMF62S8jSqLW-LDjMPYA5o-S-ijL3b5riB_OgEd7NUt3ZHqW6WOoeL1JL37thit9pg-Jf1ZLEA748AkIehzzD6SP-5Tqim06JwHw8clm9-iJgd-YijxxBzse9CiidG-QPVa8SI</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Ye, Jing</creator><creator>Zhang, Ying</creator><creator>Chen, Shengwen</creator><creator>Liu, Chaonan</creator><creator>Zhu, Yongqiang</creator><creator>Liu, Weiping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>H95</scope><orcidid>https://orcid.org/0000-0002-0591-6566</orcidid></search><sort><creationdate>201401</creationdate><title>Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid</title><author>Ye, Jing ; Zhang, Ying ; Chen, Shengwen ; Liu, Chaonan ; Zhu, Yongqiang ; Liu, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8926e0d90b1cacdaccb32ea74d592083e3375d2e89ad4a854da853a78f3497843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action of physical and chemical agents on bacteria</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Diclofop acid</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Enantioselectivity</topic><topic>Environmental toxicology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Microbiology</topic><topic>Microcystins - analysis</topic><topic>Microcystins - metabolism</topic><topic>Microcystis - drug effects</topic><topic>Microcystis aeruginosa</topic><topic>Oxidative Stress - drug effects</topic><topic>Phenyl Ethers - toxicity</topic><topic>Propionates - toxicity</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Toxin release</topic><topic>Water Pollutants, Chemical - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Chen, Shengwen</creatorcontrib><creatorcontrib>Liu, Chaonan</creatorcontrib><creatorcontrib>Zhu, Yongqiang</creatorcontrib><creatorcontrib>Liu, Weiping</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><jtitle>Aquatic toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Jing</au><au>Zhang, Ying</au><au>Chen, Shengwen</au><au>Liu, Chaonan</au><au>Zhu, Yongqiang</au><au>Liu, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid</atitle><jtitle>Aquatic toxicology</jtitle><addtitle>Aquat Toxicol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>146</volume><spage>12</spage><epage>19</epage><pages>12-19</pages><issn>0166-445X</issn><eissn>1879-1514</eissn><coden>AQTODG</coden><abstract>•The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa.•Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer.•Lifecycle analysis of chiral pollutants needs more attention in environmental assessment.
Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>24240105</pmid><doi>10.1016/j.aquatox.2013.10.023</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0591-6566</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-445X |
ispartof | Aquatic toxicology, 2014-01, Vol.146, p.12-19 |
issn | 0166-445X 1879-1514 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919971695 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action of physical and chemical agents on bacteria Animal, plant and microbial ecology Applied ecology Bacteriology Biological and medical sciences Diclofop acid Ecotoxicology, biological effects of pollution Enantioselectivity Environmental toxicology Fundamental and applied biological sciences. Psychology Microbiology Microcystins - analysis Microcystins - metabolism Microcystis - drug effects Microcystis aeruginosa Oxidative Stress - drug effects Phenyl Ethers - toxicity Propionates - toxicity Reactive Oxygen Species - metabolism Superoxide Dismutase - metabolism Toxin release Water Pollutants, Chemical - toxicity |
title | Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enantioselective%20changes%20in%20oxidative%20stress%20and%20toxin%20release%20in%20Microcystis%20aeruginosa%20exposed%20to%20chiral%20herbicide%20diclofop%20acid&rft.jtitle=Aquatic%20toxicology&rft.au=Ye,%20Jing&rft.date=2014-01&rft.volume=146&rft.spage=12&rft.epage=19&rft.pages=12-19&rft.issn=0166-445X&rft.eissn=1879-1514&rft.coden=AQTODG&rft_id=info:doi/10.1016/j.aquatox.2013.10.023&rft_dat=%3Cproquest_cross%3E1490751454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490751454&rft_id=info:pmid/24240105&rft_els_id=S0166445X13002932&rfr_iscdi=true |