Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity

We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent‐Linear and Adjoint Model Compiler (TAMC). The TAMC's recip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research, Washington, DC Washington, DC, 1999-12, Vol.104 (C12), p.29529-29547
Hauptverfasser: Marotzke, Jochem, Giering, Ralf, Zhang, Kate Q., Stammer, Detlef, Hill, Chris, Lee, Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29547
container_issue C12
container_start_page 29529
container_title Journal of Geophysical Research, Washington, DC
container_volume 104
creator Marotzke, Jochem
Giering, Ralf
Zhang, Kate Q.
Stammer, Detlef
Hill, Chris
Lee, Tong
description We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent‐Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN‐) line‐by‐line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The “kinematic sensitivity” to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east‐west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.
doi_str_mv 10.1029/1999JC900236
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919970729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919970729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5853-c311d3e3c3b17fbd3e311ec800fb75856565e5629a85ddf205afdf390049fd463</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EEqOQHR_gBUIsaPCj249l1CJDQhIQCmJpedw2cfDYHdsTmL_HoSNgFVwLl0rnXpVuAfAcozcYEfkWSylPR4kQoewRWBE8sI4QRB6DFcK96BAh_Ck4LOUatdcPrEd4BW7HFEvNO1N9ijA5WK8s1NN18rHC85NLmIzVEX6z0WYdoPHZ7IL-DW_TZAPUcYJ6noM3y7QmeFSDjtUbeGV1hTXrWOaUKyw2Fl_9ra_7Z-CJ06HYw_v_AHw5fnc5vu_OPq5PxqOzzgxioJ2hGE_UUkM3mLvNXYuxNQIht-GNYK3swIjUYpgmR9Cg3eRoC6GXbuoZPQCvFt85p5udLVVtfTE2tAVt2hWFZYuNI05kQ18-jAokWS_F_8G2Ge8Rb-DrBTQ5lZKtU3P2W533CiN1dzP1780a_uLeVxejg2u5GV_-aggWXKKGkQX74YPdP2ipTtefRy4YbaJuEflS7c8_Ip2_K8YpH9TXi7Xq2SdxLD9cqHP6C6f9tEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17587407</pqid></control><display><type>article</type><title>Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Marotzke, Jochem ; Giering, Ralf ; Zhang, Kate Q. ; Stammer, Detlef ; Hill, Chris ; Lee, Tong</creator><creatorcontrib>Marotzke, Jochem ; Giering, Ralf ; Zhang, Kate Q. ; Stammer, Detlef ; Hill, Chris ; Lee, Tong</creatorcontrib><description>We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent‐Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN‐) line‐by‐line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The “kinematic sensitivity” to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east‐west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/1999JC900236</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Other topics ; Physics of the oceans</subject><ispartof>Journal of Geophysical Research, Washington, DC, 1999-12, Vol.104 (C12), p.29529-29547</ispartof><rights>Copyright 1999 by the American Geophysical Union.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5853-c311d3e3c3b17fbd3e311ec800fb75856565e5629a85ddf205afdf390049fd463</citedby><cites>FETCH-LOGICAL-c5853-c311d3e3c3b17fbd3e311ec800fb75856565e5629a85ddf205afdf390049fd463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F1999JC900236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F1999JC900236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1218790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marotzke, Jochem</creatorcontrib><creatorcontrib>Giering, Ralf</creatorcontrib><creatorcontrib>Zhang, Kate Q.</creatorcontrib><creatorcontrib>Stammer, Detlef</creatorcontrib><creatorcontrib>Hill, Chris</creatorcontrib><creatorcontrib>Lee, Tong</creatorcontrib><title>Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity</title><title>Journal of Geophysical Research, Washington, DC</title><addtitle>J. Geophys. Res</addtitle><description>We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent‐Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN‐) line‐by‐line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The “kinematic sensitivity” to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east‐west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Other topics</subject><subject>Physics of the oceans</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkctuFDEQRS0EEqOQHR_gBUIsaPCj249l1CJDQhIQCmJpedw2cfDYHdsTmL_HoSNgFVwLl0rnXpVuAfAcozcYEfkWSylPR4kQoewRWBE8sI4QRB6DFcK96BAh_Ck4LOUatdcPrEd4BW7HFEvNO1N9ijA5WK8s1NN18rHC85NLmIzVEX6z0WYdoPHZ7IL-DW_TZAPUcYJ6noM3y7QmeFSDjtUbeGV1hTXrWOaUKyw2Fl_9ra_7Z-CJ06HYw_v_AHw5fnc5vu_OPq5PxqOzzgxioJ2hGE_UUkM3mLvNXYuxNQIht-GNYK3swIjUYpgmR9Cg3eRoC6GXbuoZPQCvFt85p5udLVVtfTE2tAVt2hWFZYuNI05kQ18-jAokWS_F_8G2Ge8Rb-DrBTQ5lZKtU3P2W533CiN1dzP1780a_uLeVxejg2u5GV_-aggWXKKGkQX74YPdP2ipTtefRy4YbaJuEflS7c8_Ip2_K8YpH9TXi7Xq2SdxLD9cqHP6C6f9tEA</recordid><startdate>19991215</startdate><enddate>19991215</enddate><creator>Marotzke, Jochem</creator><creator>Giering, Ralf</creator><creator>Zhang, Kate Q.</creator><creator>Stammer, Detlef</creator><creator>Hill, Chris</creator><creator>Lee, Tong</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19991215</creationdate><title>Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity</title><author>Marotzke, Jochem ; Giering, Ralf ; Zhang, Kate Q. ; Stammer, Detlef ; Hill, Chris ; Lee, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5853-c311d3e3c3b17fbd3e311ec800fb75856565e5629a85ddf205afdf390049fd463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Other topics</topic><topic>Physics of the oceans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marotzke, Jochem</creatorcontrib><creatorcontrib>Giering, Ralf</creatorcontrib><creatorcontrib>Zhang, Kate Q.</creatorcontrib><creatorcontrib>Stammer, Detlef</creatorcontrib><creatorcontrib>Hill, Chris</creatorcontrib><creatorcontrib>Lee, Tong</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of Geophysical Research, Washington, DC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marotzke, Jochem</au><au>Giering, Ralf</au><au>Zhang, Kate Q.</au><au>Stammer, Detlef</au><au>Hill, Chris</au><au>Lee, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity</atitle><jtitle>Journal of Geophysical Research, Washington, DC</jtitle><addtitle>J. Geophys. Res</addtitle><date>1999-12-15</date><risdate>1999</risdate><volume>104</volume><issue>C12</issue><spage>29529</spage><epage>29547</epage><pages>29529-29547</pages><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent‐Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN‐) line‐by‐line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The “kinematic sensitivity” to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east‐west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/1999JC900236</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, Washington, DC, 1999-12, Vol.104 (C12), p.29529-29547
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_1919970729
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Marine
Other topics
Physics of the oceans
title Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20the%20adjoint%20MIT%20ocean%20general%20circulation%20model%20and%20application%20to%20Atlantic%20heat%20transport%20sensitivity&rft.jtitle=Journal%20of%20Geophysical%20Research,%20Washington,%20DC&rft.au=Marotzke,%20Jochem&rft.date=1999-12-15&rft.volume=104&rft.issue=C12&rft.spage=29529&rft.epage=29547&rft.pages=29529-29547&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/1999JC900236&rft_dat=%3Cproquest_cross%3E1919970729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17587407&rft_id=info:pmid/&rfr_iscdi=true