Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment
•A continental water resources assessment system has been developed for Australia.•Satellite soil moisture data assimilation component of the system was tested.•Model was evaluated against traditional in situ network and new cosmic-ray probes.•Assimilation of satellite soil moisture improved root-zo...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2014-11, Vol.519, p.2747-2762 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •A continental water resources assessment system has been developed for Australia.•Satellite soil moisture data assimilation component of the system was tested.•Model was evaluated against traditional in situ network and new cosmic-ray probes.•Assimilation of satellite soil moisture improved root-zone moisture estimation.
A framework was developed for the continental assimilation of satellite soil moisture (SM) into an operational water balance modelling system. The ensemble Kalman filter (EnKF) was implemented to assimilate AMSR-E and ASCAT-derived SM products into the landscape model of the Australian Water Resources Assessment system (AWRA-L) and generate ensembles of daily top-layer and shallow root-zone soil moisture analyses for the continent at 0.05° resolution. We evaluated the AWRA-L SM estimates with and without assimilation against in situ moisture measurements in southeast Australia (OzNet), as well as against a new network of cosmic-ray moisture probes (CosmOz) spread across the country. Results show that AWRA-L root-zone moisture estimates are improved though the assimilation of satellite SM: model estimates of 0–30cm moisture content improved for more than 90% of OzNet sites, with an increase in average correlation from 0.68 (before assimilation) to 0.73 (after assimilation); while estimates 0–90cm moisture improved for 60% of sites with increased average correlation from 0.56 to 0.65. The assimilation of AMSR-E and ASCAT appeared to yield similar performance gains for the top-layer, however ASCAT data assimilation improved root-zone estimation for more sites. Poor performance of one data set was compensated by the other through joint assimilation. The most significant improvements in AWRA-L root-zone moisture estimation (with increases in correlation as high as 90%) occurred for siteswhere both the assimilation of satellite soil moisture improved top-layer SM accuracy and the open-loop deep-layer storage estimates were reasonably good. CosmOz SM measurements exhibited highest correlation with AWRA-L estimates for modelled root-zones layer thicknesses ranging from 20cm to 1m. Slight improvements through satellite data assimilation were observed for only 2 of 7 CosmOz sites, but the comparison was affected by a short data overlap period. The location of some of the CosmOz probes was not optimal for evaluation of satellite SM assimilation, but their utility is demonstrated and the observations may become suitable for assimilation themselves in |
---|---|
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/j.jhydrol.2014.08.008 |