Modeling winter circulation under landfast ice: The interaction of winds with landfast ice

Idealized models and a simple vertically averaged vorticity equation illustrate the effects of an upwelling favorable wind and a spatially variable landfast ice cover on the circulation beneath landfast ice. For the case of no along‐shore variations in ice, upwelling favorable winds seaward of the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Oceans 2012-04, Vol.117 (C4), p.n/a
Hauptverfasser: Kasper, Jeremy L., Weingartner, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C4
container_start_page
container_title Journal of Geophysical Research: Oceans
container_volume 117
creator Kasper, Jeremy L.
Weingartner, Thomas J.
description Idealized models and a simple vertically averaged vorticity equation illustrate the effects of an upwelling favorable wind and a spatially variable landfast ice cover on the circulation beneath landfast ice. For the case of no along‐shore variations in ice, upwelling favorable winds seaward of the ice edge result in vortex squashing beneath the landfast ice leading to (1) large decreases in coastal and ice edge sea levels, (2) cross‐shore sea level slopes and weak (
doi_str_mv 10.1029/2011JC007649
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919962843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1285089575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5026-e6c755b49053efe401536a4d789f843bb66c78c73115f2c6fe116b9079e72b143</originalsourceid><addsrcrecordid>eNqFkVFLHDEQx4O00MP61g-wIIU-dGsy2Uw2fSuHd1XuWhSL0JeQzSY1uu5qsov67ZvzRGwf2jwkMPx-f2YyhLxj9BOjoA6AMnY8p1RipXbIDJjAEoDCKzKjrKpLCiDfkL2ULmk-lcCKshn5uR5a14X-V3EX-tHFwoZop86MYeiLqW9zpTN9600ai2Dd5-LswhWPpLGPzOA3ZpvyPV78wb4lr73pktt7enfJj8Xh2fxrufq-PJp_WZVGUMDSoZVCNJWigjvvcleCo6laWStfV7xpMAO1lZwx4cGid4xho6hUTkLDKr5LPmxzb-JwO7k06uuQrOtyL26YkmaKKYWQs_6PQi1orYQUGd3_C70cptjnQTTL_8cF1kgz9XFL2TikFJ3XNzFcm_iQIb1Zi365loy_fwo1yZrOR9PbkJ4dEAol4mYkvuXuQuce_pmpj5encwZcYrbKrRXS6O6fLROvNEouhT7_ttQLWMP5Yr3SJ_w34kKnlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1000356860</pqid></control><display><type>article</type><title>Modeling winter circulation under landfast ice: The interaction of winds with landfast ice</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kasper, Jeremy L. ; Weingartner, Thomas J.</creator><creatorcontrib>Kasper, Jeremy L. ; Weingartner, Thomas J.</creatorcontrib><description>Idealized models and a simple vertically averaged vorticity equation illustrate the effects of an upwelling favorable wind and a spatially variable landfast ice cover on the circulation beneath landfast ice. For the case of no along‐shore variations in ice, upwelling favorable winds seaward of the ice edge result in vortex squashing beneath the landfast ice leading to (1) large decreases in coastal and ice edge sea levels, (2) cross‐shore sea level slopes and weak (&lt;∼.05 m s−1) under‐ice currents flowing upwind, (3) strong downwind ice edge jets, and (4) offshore transport in the under‐ice and bottom boundary layers of the landfast ice zone. The upwind under‐ice current accelerates quickly within 2–4 days and then slows as cross‐shore transport gradually decreases the cross‐shore sea level slope. Near the ice edge, bottom boundary layer convergence produces ice edge upwelling. Cross‐ice edge exchanges occur in the surface and above the bottom boundary layer and reduce the under‐ice shelf volume by 15% in 10 days. Under‐ice along‐shore pressure gradients established by along‐ and cross‐shore variations in ice width and/or under‐ice friction alter this basic circulation pattern. For a landfast ice zone of finite width and length, upwelling‐favorable winds blowing seaward of and transverse to the ice boundaries induce downwind flow beneath the ice and generate vorticity waves that propagate along‐shore in the Kelvin wave direction. Our results imply that landfast ice dynamics, not included explicitly herein, can effectively convert the long‐wavelength forcing of the wind into shorter‐scale ocean motions beneath the landfast ice. Key Points Upwelling winds seaward of an ice edge decrease the under ice sea level Ice ocean friction magnitude determines the magnitude of sea level decrease Alongshore differences in ice width or ice friction generate along‐shore flow</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2011JC007649</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Boundary layers ; coastal circulation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; Ice cover ; ice edge upwelling ; ice ocean interaction ; Ice shelves ; landfast ice ; Marine ; Oceanography ; sea ice ; Sea level ; Upwelling ; Wave direction ; Wind</subject><ispartof>Journal of Geophysical Research: Oceans, 2012-04, Vol.117 (C4), p.n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5026-e6c755b49053efe401536a4d789f843bb66c78c73115f2c6fe116b9079e72b143</citedby><cites>FETCH-LOGICAL-a5026-e6c755b49053efe401536a4d789f843bb66c78c73115f2c6fe116b9079e72b143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JC007649$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JC007649$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25967664$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasper, Jeremy L.</creatorcontrib><creatorcontrib>Weingartner, Thomas J.</creatorcontrib><title>Modeling winter circulation under landfast ice: The interaction of winds with landfast ice</title><title>Journal of Geophysical Research: Oceans</title><addtitle>J. Geophys. Res</addtitle><description>Idealized models and a simple vertically averaged vorticity equation illustrate the effects of an upwelling favorable wind and a spatially variable landfast ice cover on the circulation beneath landfast ice. For the case of no along‐shore variations in ice, upwelling favorable winds seaward of the ice edge result in vortex squashing beneath the landfast ice leading to (1) large decreases in coastal and ice edge sea levels, (2) cross‐shore sea level slopes and weak (&lt;∼.05 m s−1) under‐ice currents flowing upwind, (3) strong downwind ice edge jets, and (4) offshore transport in the under‐ice and bottom boundary layers of the landfast ice zone. The upwind under‐ice current accelerates quickly within 2–4 days and then slows as cross‐shore transport gradually decreases the cross‐shore sea level slope. Near the ice edge, bottom boundary layer convergence produces ice edge upwelling. Cross‐ice edge exchanges occur in the surface and above the bottom boundary layer and reduce the under‐ice shelf volume by 15% in 10 days. Under‐ice along‐shore pressure gradients established by along‐ and cross‐shore variations in ice width and/or under‐ice friction alter this basic circulation pattern. For a landfast ice zone of finite width and length, upwelling‐favorable winds blowing seaward of and transverse to the ice boundaries induce downwind flow beneath the ice and generate vorticity waves that propagate along‐shore in the Kelvin wave direction. Our results imply that landfast ice dynamics, not included explicitly herein, can effectively convert the long‐wavelength forcing of the wind into shorter‐scale ocean motions beneath the landfast ice. Key Points Upwelling winds seaward of an ice edge decrease the under ice sea level Ice ocean friction magnitude determines the magnitude of sea level decrease Alongshore differences in ice width or ice friction generate along‐shore flow</description><subject>Boundary layers</subject><subject>coastal circulation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Ice cover</subject><subject>ice edge upwelling</subject><subject>ice ocean interaction</subject><subject>Ice shelves</subject><subject>landfast ice</subject><subject>Marine</subject><subject>Oceanography</subject><subject>sea ice</subject><subject>Sea level</subject><subject>Upwelling</subject><subject>Wave direction</subject><subject>Wind</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkVFLHDEQx4O00MP61g-wIIU-dGsy2Uw2fSuHd1XuWhSL0JeQzSY1uu5qsov67ZvzRGwf2jwkMPx-f2YyhLxj9BOjoA6AMnY8p1RipXbIDJjAEoDCKzKjrKpLCiDfkL2ULmk-lcCKshn5uR5a14X-V3EX-tHFwoZop86MYeiLqW9zpTN9600ai2Dd5-LswhWPpLGPzOA3ZpvyPV78wb4lr73pktt7enfJj8Xh2fxrufq-PJp_WZVGUMDSoZVCNJWigjvvcleCo6laWStfV7xpMAO1lZwx4cGid4xho6hUTkLDKr5LPmxzb-JwO7k06uuQrOtyL26YkmaKKYWQs_6PQi1orYQUGd3_C70cptjnQTTL_8cF1kgz9XFL2TikFJ3XNzFcm_iQIb1Zi365loy_fwo1yZrOR9PbkJ4dEAol4mYkvuXuQuce_pmpj5encwZcYrbKrRXS6O6fLROvNEouhT7_ttQLWMP5Yr3SJ_w34kKnlw</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Kasper, Jeremy L.</creator><creator>Weingartner, Thomas J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>24P</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201204</creationdate><title>Modeling winter circulation under landfast ice: The interaction of winds with landfast ice</title><author>Kasper, Jeremy L. ; Weingartner, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5026-e6c755b49053efe401536a4d789f843bb66c78c73115f2c6fe116b9079e72b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundary layers</topic><topic>coastal circulation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Ice cover</topic><topic>ice edge upwelling</topic><topic>ice ocean interaction</topic><topic>Ice shelves</topic><topic>landfast ice</topic><topic>Marine</topic><topic>Oceanography</topic><topic>sea ice</topic><topic>Sea level</topic><topic>Upwelling</topic><topic>Wave direction</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasper, Jeremy L.</creatorcontrib><creatorcontrib>Weingartner, Thomas J.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasper, Jeremy L.</au><au>Weingartner, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling winter circulation under landfast ice: The interaction of winds with landfast ice</atitle><jtitle>Journal of Geophysical Research: Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-04</date><risdate>2012</risdate><volume>117</volume><issue>C4</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>Idealized models and a simple vertically averaged vorticity equation illustrate the effects of an upwelling favorable wind and a spatially variable landfast ice cover on the circulation beneath landfast ice. For the case of no along‐shore variations in ice, upwelling favorable winds seaward of the ice edge result in vortex squashing beneath the landfast ice leading to (1) large decreases in coastal and ice edge sea levels, (2) cross‐shore sea level slopes and weak (&lt;∼.05 m s−1) under‐ice currents flowing upwind, (3) strong downwind ice edge jets, and (4) offshore transport in the under‐ice and bottom boundary layers of the landfast ice zone. The upwind under‐ice current accelerates quickly within 2–4 days and then slows as cross‐shore transport gradually decreases the cross‐shore sea level slope. Near the ice edge, bottom boundary layer convergence produces ice edge upwelling. Cross‐ice edge exchanges occur in the surface and above the bottom boundary layer and reduce the under‐ice shelf volume by 15% in 10 days. Under‐ice along‐shore pressure gradients established by along‐ and cross‐shore variations in ice width and/or under‐ice friction alter this basic circulation pattern. For a landfast ice zone of finite width and length, upwelling‐favorable winds blowing seaward of and transverse to the ice boundaries induce downwind flow beneath the ice and generate vorticity waves that propagate along‐shore in the Kelvin wave direction. Our results imply that landfast ice dynamics, not included explicitly herein, can effectively convert the long‐wavelength forcing of the wind into shorter‐scale ocean motions beneath the landfast ice. Key Points Upwelling winds seaward of an ice edge decrease the under ice sea level Ice ocean friction magnitude determines the magnitude of sea level decrease Alongshore differences in ice width or ice friction generate along‐shore flow</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JC007649</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Oceans, 2012-04, Vol.117 (C4), p.n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_1919962843
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Boundary layers
coastal circulation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
Ice cover
ice edge upwelling
ice ocean interaction
Ice shelves
landfast ice
Marine
Oceanography
sea ice
Sea level
Upwelling
Wave direction
Wind
title Modeling winter circulation under landfast ice: The interaction of winds with landfast ice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20winter%20circulation%20under%20landfast%20ice:%20The%20interaction%20of%20winds%20with%20landfast%20ice&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Oceans&rft.au=Kasper,%20Jeremy%20L.&rft.date=2012-04&rft.volume=117&rft.issue=C4&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JC007649&rft_dat=%3Cproquest_cross%3E1285089575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1000356860&rft_id=info:pmid/&rfr_iscdi=true