Spiral-shaped reactor for water disinfection

Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination and water treatment 2016-10, Vol.57 (48-49), p.23443-23458
Hauptverfasser: Soukane, Sofiane, Ait-Djoudi, Fariza, Naceur, Wahib M., Ghaffour, Noreddine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23458
container_issue 48-49
container_start_page 23443
container_title Desalination and water treatment
container_volume 57
creator Soukane, Sofiane
Ait-Djoudi, Fariza
Naceur, Wahib M.
Ghaffour, Noreddine
description Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.
doi_str_mv 10.1080/19443994.2016.1173385
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919962426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S194439862404284X</els_id><sourcerecordid>1904211771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-745598d757663c6cf96cf52ce2e55f666ae2d799d66fff5df616002d5e09a1a3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWLQ_QSh48eDWTDYfm5NI8QsKHuw9hGSCKdvdmmwV_70prSBe7MAww_DMwLwvIRdAp0AbegOa81prPmUU5BRA1XUjjshoO69q3cjjX_0pGee8pCUEV4KzEbl-Xcdk2yq_2TX6SULrhj5NQslPO2Ca-JhjF9ANse_OyUmwbcbxvp6RxcP9YvZUzV8en2d388rxGoZKcSF045VQUtZOuqBLCuaQoRBBSmmReaW1lzKEIHyQICllXiDVFmx9Rq52Z9epf99gHswqZodtazvsN9mABq0l40wegFLOiigKDkFBCQGUFfTyD7rsN6krLxtoGOONVI0qlNhRLvU5JwxmneLKpi8D1Gy9MT_emK03Zu9N2bvd7WGR8CNiMtlF7Bz6mIrOxvfxnwvfsRSR3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822486787</pqid></control><display><type>article</type><title>Spiral-shaped reactor for water disinfection</title><source>Alma/SFX Local Collection</source><creator>Soukane, Sofiane ; Ait-Djoudi, Fariza ; Naceur, Wahib M. ; Ghaffour, Noreddine</creator><creatorcontrib>Soukane, Sofiane ; Ait-Djoudi, Fariza ; Naceur, Wahib M. ; Ghaffour, Noreddine</creatorcontrib><description>Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2016.1173385</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>CFD ; Chlorination tanks ; Chlorine ; Computational fluid dynamics ; Criteria ; Design ; Design criteria ; Disinfection ; Disinfection criteria ; Flow rates ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Municipal water ; Plug flow ; Spirals ; Tank design ; Tanks ; Turbulence ; Turbulent flow ; Water consumption ; Water disinfection</subject><ispartof>Desalination and water treatment, 2016-10, Vol.57 (48-49), p.23443-23458</ispartof><rights>2016 Elsevier Inc.</rights><rights>2016 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-745598d757663c6cf96cf52ce2e55f666ae2d799d66fff5df616002d5e09a1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Soukane, Sofiane</creatorcontrib><creatorcontrib>Ait-Djoudi, Fariza</creatorcontrib><creatorcontrib>Naceur, Wahib M.</creatorcontrib><creatorcontrib>Ghaffour, Noreddine</creatorcontrib><title>Spiral-shaped reactor for water disinfection</title><title>Desalination and water treatment</title><description>Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.</description><subject>CFD</subject><subject>Chlorination tanks</subject><subject>Chlorine</subject><subject>Computational fluid dynamics</subject><subject>Criteria</subject><subject>Design</subject><subject>Design criteria</subject><subject>Disinfection</subject><subject>Disinfection criteria</subject><subject>Flow rates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Municipal water</subject><subject>Plug flow</subject><subject>Spirals</subject><subject>Tank design</subject><subject>Tanks</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Water consumption</subject><subject>Water disinfection</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMoWLQ_QSh48eDWTDYfm5NI8QsKHuw9hGSCKdvdmmwV_70prSBe7MAww_DMwLwvIRdAp0AbegOa81prPmUU5BRA1XUjjshoO69q3cjjX_0pGee8pCUEV4KzEbl-Xcdk2yq_2TX6SULrhj5NQslPO2Ca-JhjF9ANse_OyUmwbcbxvp6RxcP9YvZUzV8en2d388rxGoZKcSF045VQUtZOuqBLCuaQoRBBSmmReaW1lzKEIHyQICllXiDVFmx9Rq52Z9epf99gHswqZodtazvsN9mABq0l40wegFLOiigKDkFBCQGUFfTyD7rsN6krLxtoGOONVI0qlNhRLvU5JwxmneLKpi8D1Gy9MT_emK03Zu9N2bvd7WGR8CNiMtlF7Bz6mIrOxvfxnwvfsRSR3A</recordid><startdate>20161020</startdate><enddate>20161020</enddate><creator>Soukane, Sofiane</creator><creator>Ait-Djoudi, Fariza</creator><creator>Naceur, Wahib M.</creator><creator>Ghaffour, Noreddine</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20161020</creationdate><title>Spiral-shaped reactor for water disinfection</title><author>Soukane, Sofiane ; Ait-Djoudi, Fariza ; Naceur, Wahib M. ; Ghaffour, Noreddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-745598d757663c6cf96cf52ce2e55f666ae2d799d66fff5df616002d5e09a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CFD</topic><topic>Chlorination tanks</topic><topic>Chlorine</topic><topic>Computational fluid dynamics</topic><topic>Criteria</topic><topic>Design</topic><topic>Design criteria</topic><topic>Disinfection</topic><topic>Disinfection criteria</topic><topic>Flow rates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Municipal water</topic><topic>Plug flow</topic><topic>Spirals</topic><topic>Tank design</topic><topic>Tanks</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Water consumption</topic><topic>Water disinfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soukane, Sofiane</creatorcontrib><creatorcontrib>Ait-Djoudi, Fariza</creatorcontrib><creatorcontrib>Naceur, Wahib M.</creatorcontrib><creatorcontrib>Ghaffour, Noreddine</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soukane, Sofiane</au><au>Ait-Djoudi, Fariza</au><au>Naceur, Wahib M.</au><au>Ghaffour, Noreddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiral-shaped reactor for water disinfection</atitle><jtitle>Desalination and water treatment</jtitle><date>2016-10-20</date><risdate>2016</risdate><volume>57</volume><issue>48-49</issue><spage>23443</spage><epage>23458</epage><pages>23443-23458</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2016.1173385</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-3986
ispartof Desalination and water treatment, 2016-10, Vol.57 (48-49), p.23443-23458
issn 1944-3986
1944-3994
1944-3986
language eng
recordid cdi_proquest_miscellaneous_1919962426
source Alma/SFX Local Collection
subjects CFD
Chlorination tanks
Chlorine
Computational fluid dynamics
Criteria
Design
Design criteria
Disinfection
Disinfection criteria
Flow rates
Fluid dynamics
Fluid flow
Hydrodynamics
Municipal water
Plug flow
Spirals
Tank design
Tanks
Turbulence
Turbulent flow
Water consumption
Water disinfection
title Spiral-shaped reactor for water disinfection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiral-shaped%20reactor%20for%20water%20disinfection&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Soukane,%20Sofiane&rft.date=2016-10-20&rft.volume=57&rft.issue=48-49&rft.spage=23443&rft.epage=23458&rft.pages=23443-23458&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2016.1173385&rft_dat=%3Cproquest_cross%3E1904211771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822486787&rft_id=info:pmid/&rft_els_id=S194439862404284X&rfr_iscdi=true