Spiral-shaped reactor for water disinfection
Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different...
Gespeichert in:
Veröffentlicht in: | Desalination and water treatment 2016-10, Vol.57 (48-49), p.23443-23458 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23458 |
---|---|
container_issue | 48-49 |
container_start_page | 23443 |
container_title | Desalination and water treatment |
container_volume | 57 |
creator | Soukane, Sofiane Ait-Djoudi, Fariza Naceur, Wahib M. Ghaffour, Noreddine |
description | Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes. |
doi_str_mv | 10.1080/19443994.2016.1173385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919962426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S194439862404284X</els_id><sourcerecordid>1904211771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-745598d757663c6cf96cf52ce2e55f666ae2d799d66fff5df616002d5e09a1a3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWLQ_QSh48eDWTDYfm5NI8QsKHuw9hGSCKdvdmmwV_70prSBe7MAww_DMwLwvIRdAp0AbegOa81prPmUU5BRA1XUjjshoO69q3cjjX_0pGee8pCUEV4KzEbl-Xcdk2yq_2TX6SULrhj5NQslPO2Ca-JhjF9ANse_OyUmwbcbxvp6RxcP9YvZUzV8en2d388rxGoZKcSF045VQUtZOuqBLCuaQoRBBSmmReaW1lzKEIHyQICllXiDVFmx9Rq52Z9epf99gHswqZodtazvsN9mABq0l40wegFLOiigKDkFBCQGUFfTyD7rsN6krLxtoGOONVI0qlNhRLvU5JwxmneLKpi8D1Gy9MT_emK03Zu9N2bvd7WGR8CNiMtlF7Bz6mIrOxvfxnwvfsRSR3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822486787</pqid></control><display><type>article</type><title>Spiral-shaped reactor for water disinfection</title><source>Alma/SFX Local Collection</source><creator>Soukane, Sofiane ; Ait-Djoudi, Fariza ; Naceur, Wahib M. ; Ghaffour, Noreddine</creator><creatorcontrib>Soukane, Sofiane ; Ait-Djoudi, Fariza ; Naceur, Wahib M. ; Ghaffour, Noreddine</creatorcontrib><description>Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2016.1173385</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>CFD ; Chlorination tanks ; Chlorine ; Computational fluid dynamics ; Criteria ; Design ; Design criteria ; Disinfection ; Disinfection criteria ; Flow rates ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Municipal water ; Plug flow ; Spirals ; Tank design ; Tanks ; Turbulence ; Turbulent flow ; Water consumption ; Water disinfection</subject><ispartof>Desalination and water treatment, 2016-10, Vol.57 (48-49), p.23443-23458</ispartof><rights>2016 Elsevier Inc.</rights><rights>2016 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-745598d757663c6cf96cf52ce2e55f666ae2d799d66fff5df616002d5e09a1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Soukane, Sofiane</creatorcontrib><creatorcontrib>Ait-Djoudi, Fariza</creatorcontrib><creatorcontrib>Naceur, Wahib M.</creatorcontrib><creatorcontrib>Ghaffour, Noreddine</creatorcontrib><title>Spiral-shaped reactor for water disinfection</title><title>Desalination and water treatment</title><description>Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.</description><subject>CFD</subject><subject>Chlorination tanks</subject><subject>Chlorine</subject><subject>Computational fluid dynamics</subject><subject>Criteria</subject><subject>Design</subject><subject>Design criteria</subject><subject>Disinfection</subject><subject>Disinfection criteria</subject><subject>Flow rates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Municipal water</subject><subject>Plug flow</subject><subject>Spirals</subject><subject>Tank design</subject><subject>Tanks</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Water consumption</subject><subject>Water disinfection</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMoWLQ_QSh48eDWTDYfm5NI8QsKHuw9hGSCKdvdmmwV_70prSBe7MAww_DMwLwvIRdAp0AbegOa81prPmUU5BRA1XUjjshoO69q3cjjX_0pGee8pCUEV4KzEbl-Xcdk2yq_2TX6SULrhj5NQslPO2Ca-JhjF9ANse_OyUmwbcbxvp6RxcP9YvZUzV8en2d388rxGoZKcSF045VQUtZOuqBLCuaQoRBBSmmReaW1lzKEIHyQICllXiDVFmx9Rq52Z9epf99gHswqZodtazvsN9mABq0l40wegFLOiigKDkFBCQGUFfTyD7rsN6krLxtoGOONVI0qlNhRLvU5JwxmneLKpi8D1Gy9MT_emK03Zu9N2bvd7WGR8CNiMtlF7Bz6mIrOxvfxnwvfsRSR3A</recordid><startdate>20161020</startdate><enddate>20161020</enddate><creator>Soukane, Sofiane</creator><creator>Ait-Djoudi, Fariza</creator><creator>Naceur, Wahib M.</creator><creator>Ghaffour, Noreddine</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20161020</creationdate><title>Spiral-shaped reactor for water disinfection</title><author>Soukane, Sofiane ; Ait-Djoudi, Fariza ; Naceur, Wahib M. ; Ghaffour, Noreddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-745598d757663c6cf96cf52ce2e55f666ae2d799d66fff5df616002d5e09a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CFD</topic><topic>Chlorination tanks</topic><topic>Chlorine</topic><topic>Computational fluid dynamics</topic><topic>Criteria</topic><topic>Design</topic><topic>Design criteria</topic><topic>Disinfection</topic><topic>Disinfection criteria</topic><topic>Flow rates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Municipal water</topic><topic>Plug flow</topic><topic>Spirals</topic><topic>Tank design</topic><topic>Tanks</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Water consumption</topic><topic>Water disinfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soukane, Sofiane</creatorcontrib><creatorcontrib>Ait-Djoudi, Fariza</creatorcontrib><creatorcontrib>Naceur, Wahib M.</creatorcontrib><creatorcontrib>Ghaffour, Noreddine</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soukane, Sofiane</au><au>Ait-Djoudi, Fariza</au><au>Naceur, Wahib M.</au><au>Ghaffour, Noreddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiral-shaped reactor for water disinfection</atitle><jtitle>Desalination and water treatment</jtitle><date>2016-10-20</date><risdate>2016</risdate><volume>57</volume><issue>48-49</issue><spage>23443</spage><epage>23458</epage><pages>23443-23458</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2016.1173385</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-3986 |
ispartof | Desalination and water treatment, 2016-10, Vol.57 (48-49), p.23443-23458 |
issn | 1944-3986 1944-3994 1944-3986 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919962426 |
source | Alma/SFX Local Collection |
subjects | CFD Chlorination tanks Chlorine Computational fluid dynamics Criteria Design Design criteria Disinfection Disinfection criteria Flow rates Fluid dynamics Fluid flow Hydrodynamics Municipal water Plug flow Spirals Tank design Tanks Turbulence Turbulent flow Water consumption Water disinfection |
title | Spiral-shaped reactor for water disinfection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiral-shaped%20reactor%20for%20water%20disinfection&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Soukane,%20Sofiane&rft.date=2016-10-20&rft.volume=57&rft.issue=48-49&rft.spage=23443&rft.epage=23458&rft.pages=23443-23458&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2016.1173385&rft_dat=%3Cproquest_cross%3E1904211771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822486787&rft_id=info:pmid/&rft_els_id=S194439862404284X&rfr_iscdi=true |