Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?
Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to descr...
Gespeichert in:
Veröffentlicht in: | Journal of the American Water Resources Association 2013-12, Vol.49 (6), p.1485-1495 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1495 |
---|---|
container_issue | 6 |
container_start_page | 1485 |
container_title | Journal of the American Water Resources Association |
container_volume | 49 |
creator | Vanderwaal, James A. Ssegane, Herbert |
description | Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds. |
doi_str_mv | 10.1111/jawr.12089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919956912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919956912</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3929-da9a8cfcfbe3b08a11d42d2abffba20f11033b9804da09115844c47d8b05c573</originalsourceid><addsrcrecordid>eNqFkUtr4zAUhc3QwvQxm_kFgqHQjVtdPSxpNYRmpmnpwwyFzE7IskycOlYqObT-91Wa0kU3vZt74H7nwOVk2U_AZ5DmfGmewxkQLNW37AAEJzkUUu4ljRXNmWD_v2eHMS4xBg6SHmTl1KPSd2PvV63pIprU7mljBteNaOqiDW3l0LBwaDauo1-5IYzIN-jW96buvX1E5cJEh-bJEeLC1fH3cbbfpCD3430fZQ9__zxczPKb-8uri8lN3lJFVF4bZaRtbFM5WmFpAGpGamKqpqkMwQ0AprRSErPaYAXAJWOWiVpWmFsu6FF2uotdB_-0cXHQqzZa13Wmd34TNShQihcKyNdowQiRwAh8jfKURyiWMqG_PqFLvwl9elkDK0QhOGfbwJN3ykRruiaY3rZRr0O7MmHURCglFcaJgx333HZu_LgD1tta9bZW_Varvp7M_72p5Ml3njYO7uXDY8KjLgQVXM_vLvW0mJfF7I7rkr4CHl-lOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467675541</pqid></control><display><type>article</type><title>Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?</title><source>Wiley Online Library All Journals</source><creator>Vanderwaal, James A. ; Ssegane, Herbert</creator><creatorcontrib>Vanderwaal, James A. ; Ssegane, Herbert</creatorcontrib><description>Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/jawr.12089</identifier><identifier>CODEN: JWRAF5</identifier><language>eng</language><publisher>Middleburg, VA: Blackwell Publishing Ltd</publisher><subject>Altitude ; Comparative studies ; computational methods ; Earth sciences ; Earth, ocean, space ; Elevation ; Exact sciences and technology ; Geomorphology ; Geomorphology, landform evolution ; geospatial analysis ; Hydrology. Hydrogeology ; hypsometric attributes ; hypsometric statistics ; Hypsometry ; Mathematical analysis ; Mathematical models ; Monadnock phase watersheds ; Polynomials ; Surficial geology ; Water resources ; Watersheds</subject><ispartof>Journal of the American Water Resources Association, 2013-12, Vol.49 (6), p.1485-1495</ispartof><rights>2013 American Water Resources Association</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjawr.12089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjawr.12089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27998900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanderwaal, James A.</creatorcontrib><creatorcontrib>Ssegane, Herbert</creatorcontrib><title>Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?</title><title>Journal of the American Water Resources Association</title><addtitle>J Am Water Resour Assoc</addtitle><description>Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.</description><subject>Altitude</subject><subject>Comparative studies</subject><subject>computational methods</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Elevation</subject><subject>Exact sciences and technology</subject><subject>Geomorphology</subject><subject>Geomorphology, landform evolution</subject><subject>geospatial analysis</subject><subject>Hydrology. Hydrogeology</subject><subject>hypsometric attributes</subject><subject>hypsometric statistics</subject><subject>Hypsometry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monadnock phase watersheds</subject><subject>Polynomials</subject><subject>Surficial geology</subject><subject>Water resources</subject><subject>Watersheds</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr4zAUhc3QwvQxm_kFgqHQjVtdPSxpNYRmpmnpwwyFzE7IskycOlYqObT-91Wa0kU3vZt74H7nwOVk2U_AZ5DmfGmewxkQLNW37AAEJzkUUu4ljRXNmWD_v2eHMS4xBg6SHmTl1KPSd2PvV63pIprU7mljBteNaOqiDW3l0LBwaDauo1-5IYzIN-jW96buvX1E5cJEh-bJEeLC1fH3cbbfpCD3430fZQ9__zxczPKb-8uri8lN3lJFVF4bZaRtbFM5WmFpAGpGamKqpqkMwQ0AprRSErPaYAXAJWOWiVpWmFsu6FF2uotdB_-0cXHQqzZa13Wmd34TNShQihcKyNdowQiRwAh8jfKURyiWMqG_PqFLvwl9elkDK0QhOGfbwJN3ykRruiaY3rZRr0O7MmHURCglFcaJgx333HZu_LgD1tta9bZW_Varvp7M_72p5Ml3njYO7uXDY8KjLgQVXM_vLvW0mJfF7I7rkr4CHl-lOg</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Vanderwaal, James A.</creator><creator>Ssegane, Herbert</creator><general>Blackwell Publishing Ltd</general><general>American Water Resources Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201312</creationdate><title>Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?</title><author>Vanderwaal, James A. ; Ssegane, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3929-da9a8cfcfbe3b08a11d42d2abffba20f11033b9804da09115844c47d8b05c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Altitude</topic><topic>Comparative studies</topic><topic>computational methods</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Elevation</topic><topic>Exact sciences and technology</topic><topic>Geomorphology</topic><topic>Geomorphology, landform evolution</topic><topic>geospatial analysis</topic><topic>Hydrology. Hydrogeology</topic><topic>hypsometric attributes</topic><topic>hypsometric statistics</topic><topic>Hypsometry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monadnock phase watersheds</topic><topic>Polynomials</topic><topic>Surficial geology</topic><topic>Water resources</topic><topic>Watersheds</topic><toplevel>online_resources</toplevel><creatorcontrib>Vanderwaal, James A.</creatorcontrib><creatorcontrib>Ssegane, Herbert</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderwaal, James A.</au><au>Ssegane, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?</atitle><jtitle>Journal of the American Water Resources Association</jtitle><addtitle>J Am Water Resour Assoc</addtitle><date>2013-12</date><risdate>2013</risdate><volume>49</volume><issue>6</issue><spage>1485</spage><epage>1495</epage><pages>1485-1495</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><coden>JWRAF5</coden><abstract>Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.</abstract><cop>Middleburg, VA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jawr.12089</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-474X |
ispartof | Journal of the American Water Resources Association, 2013-12, Vol.49 (6), p.1485-1495 |
issn | 1093-474X 1752-1688 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919956912 |
source | Wiley Online Library All Journals |
subjects | Altitude Comparative studies computational methods Earth sciences Earth, ocean, space Elevation Exact sciences and technology Geomorphology Geomorphology, landform evolution geospatial analysis Hydrology. Hydrogeology hypsometric attributes hypsometric statistics Hypsometry Mathematical analysis Mathematical models Monadnock phase watersheds Polynomials Surficial geology Water resources Watersheds |
title | Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20Polynomials%20Adequately%20Describe%20the%20Hypsometry%20of%20Monadnock%20Phase%20Watersheds?&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Vanderwaal,%20James%20A.&rft.date=2013-12&rft.volume=49&rft.issue=6&rft.spage=1485&rft.epage=1495&rft.pages=1485-1495&rft.issn=1093-474X&rft.eissn=1752-1688&rft.coden=JWRAF5&rft_id=info:doi/10.1111/jawr.12089&rft_dat=%3Cproquest_pasca%3E1919956912%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467675541&rft_id=info:pmid/&rfr_iscdi=true |