Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?

Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to descr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Water Resources Association 2013-12, Vol.49 (6), p.1485-1495
Hauptverfasser: Vanderwaal, James A., Ssegane, Herbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1495
container_issue 6
container_start_page 1485
container_title Journal of the American Water Resources Association
container_volume 49
creator Vanderwaal, James A.
Ssegane, Herbert
description Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.
doi_str_mv 10.1111/jawr.12089
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919956912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919956912</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3929-da9a8cfcfbe3b08a11d42d2abffba20f11033b9804da09115844c47d8b05c573</originalsourceid><addsrcrecordid>eNqFkUtr4zAUhc3QwvQxm_kFgqHQjVtdPSxpNYRmpmnpwwyFzE7IskycOlYqObT-91Wa0kU3vZt74H7nwOVk2U_AZ5DmfGmewxkQLNW37AAEJzkUUu4ljRXNmWD_v2eHMS4xBg6SHmTl1KPSd2PvV63pIprU7mljBteNaOqiDW3l0LBwaDauo1-5IYzIN-jW96buvX1E5cJEh-bJEeLC1fH3cbbfpCD3430fZQ9__zxczPKb-8uri8lN3lJFVF4bZaRtbFM5WmFpAGpGamKqpqkMwQ0AprRSErPaYAXAJWOWiVpWmFsu6FF2uotdB_-0cXHQqzZa13Wmd34TNShQihcKyNdowQiRwAh8jfKURyiWMqG_PqFLvwl9elkDK0QhOGfbwJN3ykRruiaY3rZRr0O7MmHURCglFcaJgx333HZu_LgD1tta9bZW_Varvp7M_72p5Ml3njYO7uXDY8KjLgQVXM_vLvW0mJfF7I7rkr4CHl-lOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467675541</pqid></control><display><type>article</type><title>Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?</title><source>Wiley Online Library All Journals</source><creator>Vanderwaal, James A. ; Ssegane, Herbert</creator><creatorcontrib>Vanderwaal, James A. ; Ssegane, Herbert</creatorcontrib><description>Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/jawr.12089</identifier><identifier>CODEN: JWRAF5</identifier><language>eng</language><publisher>Middleburg, VA: Blackwell Publishing Ltd</publisher><subject>Altitude ; Comparative studies ; computational methods ; Earth sciences ; Earth, ocean, space ; Elevation ; Exact sciences and technology ; Geomorphology ; Geomorphology, landform evolution ; geospatial analysis ; Hydrology. Hydrogeology ; hypsometric attributes ; hypsometric statistics ; Hypsometry ; Mathematical analysis ; Mathematical models ; Monadnock phase watersheds ; Polynomials ; Surficial geology ; Water resources ; Watersheds</subject><ispartof>Journal of the American Water Resources Association, 2013-12, Vol.49 (6), p.1485-1495</ispartof><rights>2013 American Water Resources Association</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjawr.12089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjawr.12089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27998900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanderwaal, James A.</creatorcontrib><creatorcontrib>Ssegane, Herbert</creatorcontrib><title>Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?</title><title>Journal of the American Water Resources Association</title><addtitle>J Am Water Resour Assoc</addtitle><description>Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.</description><subject>Altitude</subject><subject>Comparative studies</subject><subject>computational methods</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Elevation</subject><subject>Exact sciences and technology</subject><subject>Geomorphology</subject><subject>Geomorphology, landform evolution</subject><subject>geospatial analysis</subject><subject>Hydrology. Hydrogeology</subject><subject>hypsometric attributes</subject><subject>hypsometric statistics</subject><subject>Hypsometry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monadnock phase watersheds</subject><subject>Polynomials</subject><subject>Surficial geology</subject><subject>Water resources</subject><subject>Watersheds</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr4zAUhc3QwvQxm_kFgqHQjVtdPSxpNYRmpmnpwwyFzE7IskycOlYqObT-91Wa0kU3vZt74H7nwOVk2U_AZ5DmfGmewxkQLNW37AAEJzkUUu4ljRXNmWD_v2eHMS4xBg6SHmTl1KPSd2PvV63pIprU7mljBteNaOqiDW3l0LBwaDauo1-5IYzIN-jW96buvX1E5cJEh-bJEeLC1fH3cbbfpCD3430fZQ9__zxczPKb-8uri8lN3lJFVF4bZaRtbFM5WmFpAGpGamKqpqkMwQ0AprRSErPaYAXAJWOWiVpWmFsu6FF2uotdB_-0cXHQqzZa13Wmd34TNShQihcKyNdowQiRwAh8jfKURyiWMqG_PqFLvwl9elkDK0QhOGfbwJN3ykRruiaY3rZRr0O7MmHURCglFcaJgx333HZu_LgD1tta9bZW_Varvp7M_72p5Ml3njYO7uXDY8KjLgQVXM_vLvW0mJfF7I7rkr4CHl-lOg</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Vanderwaal, James A.</creator><creator>Ssegane, Herbert</creator><general>Blackwell Publishing Ltd</general><general>American Water Resources Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201312</creationdate><title>Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?</title><author>Vanderwaal, James A. ; Ssegane, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3929-da9a8cfcfbe3b08a11d42d2abffba20f11033b9804da09115844c47d8b05c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Altitude</topic><topic>Comparative studies</topic><topic>computational methods</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Elevation</topic><topic>Exact sciences and technology</topic><topic>Geomorphology</topic><topic>Geomorphology, landform evolution</topic><topic>geospatial analysis</topic><topic>Hydrology. Hydrogeology</topic><topic>hypsometric attributes</topic><topic>hypsometric statistics</topic><topic>Hypsometry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monadnock phase watersheds</topic><topic>Polynomials</topic><topic>Surficial geology</topic><topic>Water resources</topic><topic>Watersheds</topic><toplevel>online_resources</toplevel><creatorcontrib>Vanderwaal, James A.</creatorcontrib><creatorcontrib>Ssegane, Herbert</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderwaal, James A.</au><au>Ssegane, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?</atitle><jtitle>Journal of the American Water Resources Association</jtitle><addtitle>J Am Water Resour Assoc</addtitle><date>2013-12</date><risdate>2013</risdate><volume>49</volume><issue>6</issue><spage>1485</spage><epage>1495</epage><pages>1485-1495</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><coden>JWRAF5</coden><abstract>Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.</abstract><cop>Middleburg, VA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jawr.12089</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1093-474X
ispartof Journal of the American Water Resources Association, 2013-12, Vol.49 (6), p.1485-1495
issn 1093-474X
1752-1688
language eng
recordid cdi_proquest_miscellaneous_1919956912
source Wiley Online Library All Journals
subjects Altitude
Comparative studies
computational methods
Earth sciences
Earth, ocean, space
Elevation
Exact sciences and technology
Geomorphology
Geomorphology, landform evolution
geospatial analysis
Hydrology. Hydrogeology
hypsometric attributes
hypsometric statistics
Hypsometry
Mathematical analysis
Mathematical models
Monadnock phase watersheds
Polynomials
Surficial geology
Water resources
Watersheds
title Do Polynomials Adequately Describe the Hypsometry of Monadnock Phase Watersheds?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20Polynomials%20Adequately%20Describe%20the%20Hypsometry%20of%20Monadnock%20Phase%20Watersheds?&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Vanderwaal,%20James%20A.&rft.date=2013-12&rft.volume=49&rft.issue=6&rft.spage=1485&rft.epage=1495&rft.pages=1485-1495&rft.issn=1093-474X&rft.eissn=1752-1688&rft.coden=JWRAF5&rft_id=info:doi/10.1111/jawr.12089&rft_dat=%3Cproquest_pasca%3E1919956912%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467675541&rft_id=info:pmid/&rfr_iscdi=true