Observations of bed form evolution with field-scale oscillatory hydrodynamic forcing

The evolution of rippled beds in response to irregular waves was examined over short temporal scales. Observations of natural irregularly rippled beds and the oscillatory, two‐dimensional, time‐varying velocity field were collected using a submersible particle image velocimetry (PIV) system. Bed for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Oceans 2009-08, Vol.114 (C8), p.n/a
Hauptverfasser: Nichols, C. S., Foster, D. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C8
container_start_page
container_title Journal of Geophysical Research: Oceans
container_volume 114
creator Nichols, C. S.
Foster, D. L.
description The evolution of rippled beds in response to irregular waves was examined over short temporal scales. Observations of natural irregularly rippled beds and the oscillatory, two‐dimensional, time‐varying velocity field were collected using a submersible particle image velocimetry (PIV) system. Bed form evolution regimes characterized by the ripple radius of curvature were examined relative to measures of the nondimensional bed stress (the grain roughness Shields parameter), the nondimensional pressure gradient (the Sleath parameter), and the water column coherent structure formation from the ripples (the swirling strength). Bed forms were found to respond to individual waves by modulating amplitude as wave groups passed. The bed form approached its initial geometry following the passage of a group even when the critical value of the Shields parameter for sheet flow was exceeded. However, when the Sleath parameter exceeded the critical value for plug flow, the bed form profile flattened, requiring significant time after the wave group passed to rebuild the ripples. These observations suggest that the ability to predict bed form geometry with respect to wave forcing is possible but requires knowledge of the initial bed form geometry, as well as the flow field evolution.
doi_str_mv 10.1029/2008JC004733
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919956356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919956356</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3338-e95584fed89e01e15d4160406e983f8a6f44fe306c6d5d68f0ca7cd141b667073</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi0EElHojR-wFyQOLIw_13tEEQRC1VYofNwsxx5Tw2Zd7E3L_nscpao4MRpppJn3eTUzhDyn8JoC698wAL1ZAYiO80dkwahULWPAHpMFUKFbYKx7Ss5K-Qk1hFQC6IJsL3cF862dYhpLk0KzQ9-ElPcN3qbhcGw3d3G6bkLEwbfF2QGbVFwcBjulPDfXs8_Jz6PdR3cEXRx_PCNPgh0Knt3XJfny_t129aE9v1x_XL09by3nXLfYS6lFQK97BIpUekEVCFDYax60VUHUKQfllJde6QDOds5TQXdKddDxJXl58r3J6fcBy2T2sTisq42YDsXQnva9VLzmkrw6SV1OpWQM5ibHvc2zoWCO_zP__q_KX9w72-PJIdvRxfLAsOoLmsmq4yfdXRxw_q-n2aw_ryitnUq1JyqWCf88UDb_MqrjnTTfLtZmI7ZXF1ffv5pP_C9qEY1X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919956356</pqid></control><display><type>article</type><title>Observations of bed form evolution with field-scale oscillatory hydrodynamic forcing</title><source>Wiley-Blackwell Journals</source><source>Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Nichols, C. S. ; Foster, D. L.</creator><creatorcontrib>Nichols, C. S. ; Foster, D. L.</creatorcontrib><description>The evolution of rippled beds in response to irregular waves was examined over short temporal scales. Observations of natural irregularly rippled beds and the oscillatory, two‐dimensional, time‐varying velocity field were collected using a submersible particle image velocimetry (PIV) system. Bed form evolution regimes characterized by the ripple radius of curvature were examined relative to measures of the nondimensional bed stress (the grain roughness Shields parameter), the nondimensional pressure gradient (the Sleath parameter), and the water column coherent structure formation from the ripples (the swirling strength). Bed forms were found to respond to individual waves by modulating amplitude as wave groups passed. The bed form approached its initial geometry following the passage of a group even when the critical value of the Shields parameter for sheet flow was exceeded. However, when the Sleath parameter exceeded the critical value for plug flow, the bed form profile flattened, requiring significant time after the wave group passed to rebuild the ripples. These observations suggest that the ability to predict bed form geometry with respect to wave forcing is possible but requires knowledge of the initial bed form geometry, as well as the flow field evolution.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2008JC004733</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>bed form evolution ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; field scale ; Marine ; oscillatory</subject><ispartof>Journal of Geophysical Research: Oceans, 2009-08, Vol.114 (C8), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3338-e95584fed89e01e15d4160406e983f8a6f44fe306c6d5d68f0ca7cd141b667073</citedby><cites>FETCH-LOGICAL-a3338-e95584fed89e01e15d4160406e983f8a6f44fe306c6d5d68f0ca7cd141b667073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JC004733$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JC004733$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21990825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, C. S.</creatorcontrib><creatorcontrib>Foster, D. L.</creatorcontrib><title>Observations of bed form evolution with field-scale oscillatory hydrodynamic forcing</title><title>Journal of Geophysical Research: Oceans</title><addtitle>J. Geophys. Res</addtitle><description>The evolution of rippled beds in response to irregular waves was examined over short temporal scales. Observations of natural irregularly rippled beds and the oscillatory, two‐dimensional, time‐varying velocity field were collected using a submersible particle image velocimetry (PIV) system. Bed form evolution regimes characterized by the ripple radius of curvature were examined relative to measures of the nondimensional bed stress (the grain roughness Shields parameter), the nondimensional pressure gradient (the Sleath parameter), and the water column coherent structure formation from the ripples (the swirling strength). Bed forms were found to respond to individual waves by modulating amplitude as wave groups passed. The bed form approached its initial geometry following the passage of a group even when the critical value of the Shields parameter for sheet flow was exceeded. However, when the Sleath parameter exceeded the critical value for plug flow, the bed form profile flattened, requiring significant time after the wave group passed to rebuild the ripples. These observations suggest that the ability to predict bed form geometry with respect to wave forcing is possible but requires knowledge of the initial bed form geometry, as well as the flow field evolution.</description><subject>bed form evolution</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>field scale</subject><subject>Marine</subject><subject>oscillatory</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vEzEQhi0EElHojR-wFyQOLIw_13tEEQRC1VYofNwsxx5Tw2Zd7E3L_nscpao4MRpppJn3eTUzhDyn8JoC698wAL1ZAYiO80dkwahULWPAHpMFUKFbYKx7Ss5K-Qk1hFQC6IJsL3cF862dYhpLk0KzQ9-ElPcN3qbhcGw3d3G6bkLEwbfF2QGbVFwcBjulPDfXs8_Jz6PdR3cEXRx_PCNPgh0Knt3XJfny_t129aE9v1x_XL09by3nXLfYS6lFQK97BIpUekEVCFDYax60VUHUKQfllJde6QDOds5TQXdKddDxJXl58r3J6fcBy2T2sTisq42YDsXQnva9VLzmkrw6SV1OpWQM5ibHvc2zoWCO_zP__q_KX9w72-PJIdvRxfLAsOoLmsmq4yfdXRxw_q-n2aw_ryitnUq1JyqWCf88UDb_MqrjnTTfLtZmI7ZXF1ffv5pP_C9qEY1X</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Nichols, C. S.</creator><creator>Foster, D. L.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>200908</creationdate><title>Observations of bed form evolution with field-scale oscillatory hydrodynamic forcing</title><author>Nichols, C. S. ; Foster, D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3338-e95584fed89e01e15d4160406e983f8a6f44fe306c6d5d68f0ca7cd141b667073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>bed form evolution</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>field scale</topic><topic>Marine</topic><topic>oscillatory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, C. S.</creatorcontrib><creatorcontrib>Foster, D. L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research: Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, C. S.</au><au>Foster, D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observations of bed form evolution with field-scale oscillatory hydrodynamic forcing</atitle><jtitle>Journal of Geophysical Research: Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2009-08</date><risdate>2009</risdate><volume>114</volume><issue>C8</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>The evolution of rippled beds in response to irregular waves was examined over short temporal scales. Observations of natural irregularly rippled beds and the oscillatory, two‐dimensional, time‐varying velocity field were collected using a submersible particle image velocimetry (PIV) system. Bed form evolution regimes characterized by the ripple radius of curvature were examined relative to measures of the nondimensional bed stress (the grain roughness Shields parameter), the nondimensional pressure gradient (the Sleath parameter), and the water column coherent structure formation from the ripples (the swirling strength). Bed forms were found to respond to individual waves by modulating amplitude as wave groups passed. The bed form approached its initial geometry following the passage of a group even when the critical value of the Shields parameter for sheet flow was exceeded. However, when the Sleath parameter exceeded the critical value for plug flow, the bed form profile flattened, requiring significant time after the wave group passed to rebuild the ripples. These observations suggest that the ability to predict bed form geometry with respect to wave forcing is possible but requires knowledge of the initial bed form geometry, as well as the flow field evolution.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JC004733</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Oceans, 2009-08, Vol.114 (C8), p.n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_1919956356
source Wiley-Blackwell Journals; Wiley Online Library; Wiley-Blackwell AGU Digital Archive; Alma/SFX Local Collection
subjects bed form evolution
Earth sciences
Earth, ocean, space
Exact sciences and technology
field scale
Marine
oscillatory
title Observations of bed form evolution with field-scale oscillatory hydrodynamic forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observations%20of%20bed%20form%20evolution%20with%20field-scale%20oscillatory%20hydrodynamic%20forcing&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Oceans&rft.au=Nichols,%20C.%20S.&rft.date=2009-08&rft.volume=114&rft.issue=C8&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JC004733&rft_dat=%3Cproquest_cross%3E1919956356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919956356&rft_id=info:pmid/&rfr_iscdi=true