A three-dimensional model of wave attenuation in the marginal ice zone

A three‐dimensional model of wave scattering by a large array of floating thin elastic plates is used to predict the rate of ocean wave attenuation in the marginal ice zone in terms of the properties of the ice cover and the incoming wavefield. This is regarded as a small step toward assimilating in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Oceans 2010-12, Vol.115 (C12), p.n/a
Hauptverfasser: Bennetts, L. G., Peter, M. A., Squire, V. A., Meylan, M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C12
container_start_page
container_title Journal of Geophysical Research: Oceans
container_volume 115
creator Bennetts, L. G.
Peter, M. A.
Squire, V. A.
Meylan, M. H.
description A three‐dimensional model of wave scattering by a large array of floating thin elastic plates is used to predict the rate of ocean wave attenuation in the marginal ice zone in terms of the properties of the ice cover and the incoming wavefield. This is regarded as a small step toward assimilating interactions of ocean waves with areas of sea ice into oceanic general circulation models. Numerical results confirm previous findings that attenuation is predominantly affected by wave period and by the average thickness of the ice cover. It is found that the shape and distribution of the floes and the inclusion of an Archimedean draft has little impact on the attenuation produced. The model demonstrates a linear relationship between ice cover concentration and attenuation. An additional study is conducted into the directional evolvement of the wavefield, where collimation and spreading can both occur, depending on the physical circumstances. Finally, the attenuation predicted by the new three‐dimensional model is compared with an existing two‐dimensional model and with two sets of experimental data, with the latter producing convincing agreement.
doi_str_mv 10.1029/2009JC005982
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919956326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919956326</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5789-d475d1aaaa4d216f3116aedf57822bce768a61d2aa22f591dac63bb62ccb07f83</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpoMtmb_0AhlLIoU6kkSVZx9Rktw0hpf_oUczK40Sp195I3qbpp6_ChhB66Fzm8H7vMfMYey34seBgT4Bze95wrmwNL9gMhNIlAIeXbMZFVZccwLxii5RueJ5K6YqLGVueFtN1JCrbsKEhhXHAvtiMLfXF2BV3-IsKnCYadjhlrQhDxqnYYLwKD2TwVPwZBzpkBx32iRaPe86-L8--NR_Ki0-rj83pRYnK1LZsK6NagXmqFoTupBAaqe2yCLD2ZHSNWrSACNApK1r0Wq7XGrxfc9PVcs6O9rnbON7uKE1uE5KnvseBxl1ywgprlZagM_rmH_Rm3MV8dHKgTV0pxZXJ1Ls95eOYUqTObWPI7907wd1Dr-55rxl_-xiKyWPfRRx8SE8ekDVUWsnMyT13F3q6_2-mO199aXIPwmZXuXeFNNHvJxfGn04baZT7cblyl8vq6-f3unFc_gUtupN7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678455057</pqid></control><display><type>article</type><title>A three-dimensional model of wave attenuation in the marginal ice zone</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Bennetts, L. G. ; Peter, M. A. ; Squire, V. A. ; Meylan, M. H.</creator><creatorcontrib>Bennetts, L. G. ; Peter, M. A. ; Squire, V. A. ; Meylan, M. H.</creatorcontrib><description>A three‐dimensional model of wave scattering by a large array of floating thin elastic plates is used to predict the rate of ocean wave attenuation in the marginal ice zone in terms of the properties of the ice cover and the incoming wavefield. This is regarded as a small step toward assimilating interactions of ocean waves with areas of sea ice into oceanic general circulation models. Numerical results confirm previous findings that attenuation is predominantly affected by wave period and by the average thickness of the ice cover. It is found that the shape and distribution of the floes and the inclusion of an Archimedean draft has little impact on the attenuation produced. The model demonstrates a linear relationship between ice cover concentration and attenuation. An additional study is conducted into the directional evolvement of the wavefield, where collimation and spreading can both occur, depending on the physical circumstances. Finally, the attenuation predicted by the new three‐dimensional model is compared with an existing two‐dimensional model and with two sets of experimental data, with the latter producing convincing agreement.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2009JC005982</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Elastic plates ; Exact sciences and technology ; General circulation models ; Geophysics ; Ice cover ; marginal ice zone ; Marine ; Modelling ; Ocean waves ; Oceanic general circulation model ; Oceans ; Sea ice ; Surface water waves ; Wave attenuation ; Wave period ; Wave scattering</subject><ispartof>Journal of Geophysical Research: Oceans, 2010-12, Vol.115 (C12), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5789-d475d1aaaa4d216f3116aedf57822bce768a61d2aa22f591dac63bb62ccb07f83</citedby><cites>FETCH-LOGICAL-a5789-d475d1aaaa4d216f3116aedf57822bce768a61d2aa22f591dac63bb62ccb07f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JC005982$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JC005982$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,11521,27931,27932,45581,45582,46416,46475,46840,46899</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23824653$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennetts, L. G.</creatorcontrib><creatorcontrib>Peter, M. A.</creatorcontrib><creatorcontrib>Squire, V. A.</creatorcontrib><creatorcontrib>Meylan, M. H.</creatorcontrib><title>A three-dimensional model of wave attenuation in the marginal ice zone</title><title>Journal of Geophysical Research: Oceans</title><addtitle>J. Geophys. Res</addtitle><description>A three‐dimensional model of wave scattering by a large array of floating thin elastic plates is used to predict the rate of ocean wave attenuation in the marginal ice zone in terms of the properties of the ice cover and the incoming wavefield. This is regarded as a small step toward assimilating interactions of ocean waves with areas of sea ice into oceanic general circulation models. Numerical results confirm previous findings that attenuation is predominantly affected by wave period and by the average thickness of the ice cover. It is found that the shape and distribution of the floes and the inclusion of an Archimedean draft has little impact on the attenuation produced. The model demonstrates a linear relationship between ice cover concentration and attenuation. An additional study is conducted into the directional evolvement of the wavefield, where collimation and spreading can both occur, depending on the physical circumstances. Finally, the attenuation predicted by the new three‐dimensional model is compared with an existing two‐dimensional model and with two sets of experimental data, with the latter producing convincing agreement.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Elastic plates</subject><subject>Exact sciences and technology</subject><subject>General circulation models</subject><subject>Geophysics</subject><subject>Ice cover</subject><subject>marginal ice zone</subject><subject>Marine</subject><subject>Modelling</subject><subject>Ocean waves</subject><subject>Oceanic general circulation model</subject><subject>Oceans</subject><subject>Sea ice</subject><subject>Surface water waves</subject><subject>Wave attenuation</subject><subject>Wave period</subject><subject>Wave scattering</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpoMtmb_0AhlLIoU6kkSVZx9Rktw0hpf_oUczK40Sp195I3qbpp6_ChhB66Fzm8H7vMfMYey34seBgT4Bze95wrmwNL9gMhNIlAIeXbMZFVZccwLxii5RueJ5K6YqLGVueFtN1JCrbsKEhhXHAvtiMLfXF2BV3-IsKnCYadjhlrQhDxqnYYLwKD2TwVPwZBzpkBx32iRaPe86-L8--NR_Ki0-rj83pRYnK1LZsK6NagXmqFoTupBAaqe2yCLD2ZHSNWrSACNApK1r0Wq7XGrxfc9PVcs6O9rnbON7uKE1uE5KnvseBxl1ywgprlZagM_rmH_Rm3MV8dHKgTV0pxZXJ1Ls95eOYUqTObWPI7907wd1Dr-55rxl_-xiKyWPfRRx8SE8ekDVUWsnMyT13F3q6_2-mO199aXIPwmZXuXeFNNHvJxfGn04baZT7cblyl8vq6-f3unFc_gUtupN7</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Bennetts, L. G.</creator><creator>Peter, M. A.</creator><creator>Squire, V. A.</creator><creator>Meylan, M. H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201012</creationdate><title>A three-dimensional model of wave attenuation in the marginal ice zone</title><author>Bennetts, L. G. ; Peter, M. A. ; Squire, V. A. ; Meylan, M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5789-d475d1aaaa4d216f3116aedf57822bce768a61d2aa22f591dac63bb62ccb07f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Elastic plates</topic><topic>Exact sciences and technology</topic><topic>General circulation models</topic><topic>Geophysics</topic><topic>Ice cover</topic><topic>marginal ice zone</topic><topic>Marine</topic><topic>Modelling</topic><topic>Ocean waves</topic><topic>Oceanic general circulation model</topic><topic>Oceans</topic><topic>Sea ice</topic><topic>Surface water waves</topic><topic>Wave attenuation</topic><topic>Wave period</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennetts, L. G.</creatorcontrib><creatorcontrib>Peter, M. A.</creatorcontrib><creatorcontrib>Squire, V. A.</creatorcontrib><creatorcontrib>Meylan, M. H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research: Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennetts, L. G.</au><au>Peter, M. A.</au><au>Squire, V. A.</au><au>Meylan, M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A three-dimensional model of wave attenuation in the marginal ice zone</atitle><jtitle>Journal of Geophysical Research: Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-12</date><risdate>2010</risdate><volume>115</volume><issue>C12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>A three‐dimensional model of wave scattering by a large array of floating thin elastic plates is used to predict the rate of ocean wave attenuation in the marginal ice zone in terms of the properties of the ice cover and the incoming wavefield. This is regarded as a small step toward assimilating interactions of ocean waves with areas of sea ice into oceanic general circulation models. Numerical results confirm previous findings that attenuation is predominantly affected by wave period and by the average thickness of the ice cover. It is found that the shape and distribution of the floes and the inclusion of an Archimedean draft has little impact on the attenuation produced. The model demonstrates a linear relationship between ice cover concentration and attenuation. An additional study is conducted into the directional evolvement of the wavefield, where collimation and spreading can both occur, depending on the physical circumstances. Finally, the attenuation predicted by the new three‐dimensional model is compared with an existing two‐dimensional model and with two sets of experimental data, with the latter producing convincing agreement.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JC005982</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Oceans, 2010-12, Vol.115 (C12), p.n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_1919956326
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Earth sciences
Earth, ocean, space
Elastic plates
Exact sciences and technology
General circulation models
Geophysics
Ice cover
marginal ice zone
Marine
Modelling
Ocean waves
Oceanic general circulation model
Oceans
Sea ice
Surface water waves
Wave attenuation
Wave period
Wave scattering
title A three-dimensional model of wave attenuation in the marginal ice zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20three-dimensional%20model%20of%20wave%20attenuation%20in%20the%20marginal%20ice%20zone&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Oceans&rft.au=Bennetts,%20L.%20G.&rft.date=2010-12&rft.volume=115&rft.issue=C12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JC005982&rft_dat=%3Cproquest_cross%3E1919956326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678455057&rft_id=info:pmid/&rfr_iscdi=true