Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf
In January 2008, a patch of high reflectance detected by ocean color satellite images was sampled during a cruise over the southern Argentinean continental shelf. High calcite concentrations (particulate inorganic carbon (PIC)) found at the patch were associated with dominance of the coccolithophori...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2011-03, Vol.116 (C3), p.n/a, Article C03025 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | C3 |
container_start_page | |
container_title | Journal of Geophysical Research |
container_volume | 116 |
creator | Garcia, Carlos Alberto Eiras Garcia, Virginia Maria Tavano Dogliotti, Ana Inés Ferreira, Amábile Romero, Silvia I. Mannino, Antonio Souza, Marcio S. Mata, Mauricio M. |
description | In January 2008, a patch of high reflectance detected by ocean color satellite images was sampled during a cruise over the southern Argentinean continental shelf. High calcite concentrations (particulate inorganic carbon (PIC)) found at the patch were associated with dominance of the coccolithophorid Emiliania huxleyi. Relatively low chlorophyll concentrations (0.29 to 1.48 mg m−3) were found, but both particulate attenuation (0.27 to 1.15 m−1) and backscattering coefficients at 660 nm (0.003 to 0.042 m−1) were noticeably high. Particulate inorganic to organic carbon (POC) ratio (PIC:POC) was highly variable (0.02 to 1.1), but mostly high, showing a significant correlation with particulate backscattering coefficient at 660 nm (r = 0.83, p < 0.005). The spectral dependency of the backscattering coefficient followed Gordon et al. (2009). Both the time evolution analyses of normalized water leaving radiance at 551 nm (nLw551) and the high PIC:POC ratios suggested an advanced stage of the coccolithophorid bloom, therefore with high detached coccoliths:cell ratios. Moreover, this was supported by a strong correlation between PIC and both particulate backscattering (r = 0.81, p < 0.005) and particulate beam attenuation coefficient (r = 0.7, p < 0.05). Remote sensing reflectance data were strongly related to particle backscattering and backscattering ratio, but not to absorption. NASA operational algorithms overestimated chlorophyll by a factor of ∼2 and estimated PIC with a relatively high root‐mean‐square (RMS) error (RMS = 97.9 μg PIC L−1). Better estimates of PIC values (RMS = 81.5 μg PIC L−1) were achieved when we used the original PIC‐specific backscattering coefficient (Balch et al., 2005). |
doi_str_mv | 10.1029/2010JC006595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919956253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312732171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4384-f92d6f60f0adec6bdcfa27e0c887f031c46a985943b11b3a8e83241e54643e0e3</originalsourceid><addsrcrecordid>eNp90M9rVDEQB_AgFlxqb_4BwZMHn05-vuQoS91aitaiFHoJ2bykm_o2WZOs2v_eyIpID53LHObzHYZB6AWBNwSofkuBwPkSQAotnqAFJUIOlAJ9ihZAuBqA0vEZOqn1DnpxITmQBQqn6UcsOW19anbGLqcptphTxTZNeB3zkHctuj6q8TbZti8e54Btl87lObZN3m1yid3OOW9xTLhtPL60zd7mFG3CdePn8BwdBTtXf_K3H6Ov70-_LM-Gi0-rD8t3F4PlTPEhaDrJICGAnbyT68kFS0cPTqkxACOOS6uV0JytCVkzq7xilBMvuOTMg2fH6NVh767k73tfm9nG6vw82-TzvhqiidZCUsE6ffmA3uV9Sf06oySwvnIkHb0-IFdyrcUHsytxa8u9IWD-vN38__bO2YH_jLO_f9Sa89XVkhA18p4aDqlYm__1L2XLNyNHNgpz_XFlPpOrG3Gjrw1jvwH5PJK_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860354671</pqid></control><display><type>article</type><title>Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Garcia, Carlos Alberto Eiras ; Garcia, Virginia Maria Tavano ; Dogliotti, Ana Inés ; Ferreira, Amábile ; Romero, Silvia I. ; Mannino, Antonio ; Souza, Marcio S. ; Mata, Mauricio M.</creator><creatorcontrib>Garcia, Carlos Alberto Eiras ; Garcia, Virginia Maria Tavano ; Dogliotti, Ana Inés ; Ferreira, Amábile ; Romero, Silvia I. ; Mannino, Antonio ; Souza, Marcio S. ; Mata, Mauricio M.</creatorcontrib><description>In January 2008, a patch of high reflectance detected by ocean color satellite images was sampled during a cruise over the southern Argentinean continental shelf. High calcite concentrations (particulate inorganic carbon (PIC)) found at the patch were associated with dominance of the coccolithophorid Emiliania huxleyi. Relatively low chlorophyll concentrations (0.29 to 1.48 mg m−3) were found, but both particulate attenuation (0.27 to 1.15 m−1) and backscattering coefficients at 660 nm (0.003 to 0.042 m−1) were noticeably high. Particulate inorganic to organic carbon (POC) ratio (PIC:POC) was highly variable (0.02 to 1.1), but mostly high, showing a significant correlation with particulate backscattering coefficient at 660 nm (r = 0.83, p < 0.005). The spectral dependency of the backscattering coefficient followed Gordon et al. (2009). Both the time evolution analyses of normalized water leaving radiance at 551 nm (nLw551) and the high PIC:POC ratios suggested an advanced stage of the coccolithophorid bloom, therefore with high detached coccoliths:cell ratios. Moreover, this was supported by a strong correlation between PIC and both particulate backscattering (r = 0.81, p < 0.005) and particulate beam attenuation coefficient (r = 0.7, p < 0.05). Remote sensing reflectance data were strongly related to particle backscattering and backscattering ratio, but not to absorption. NASA operational algorithms overestimated chlorophyll by a factor of ∼2 and estimated PIC with a relatively high root‐mean‐square (RMS) error (RMS = 97.9 μg PIC L−1). Better estimates of PIC values (RMS = 81.5 μg PIC L−1) were achieved when we used the original PIC‐specific backscattering coefficient (Balch et al., 2005).</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2010JC006595</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Biological oceanography ; Calcite ; Chemical oceanography ; Chlorophyll ; coccolithophorid bloom ; Continental shelves ; Environmental conditions ; Geobiology ; Geophysics ; Inorganic carbon ; Marine ; Oceanography ; optical properties ; Organic carbon ; Patagonian shelf ; Reflectance ; Remote sensing</subject><ispartof>Journal of Geophysical Research, 2011-03, Vol.116 (C3), p.n/a, Article C03025</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4384-f92d6f60f0adec6bdcfa27e0c887f031c46a985943b11b3a8e83241e54643e0e3</citedby><cites>FETCH-LOGICAL-a4384-f92d6f60f0adec6bdcfa27e0c887f031c46a985943b11b3a8e83241e54643e0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JC006595$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JC006595$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,11521,27931,27932,45581,45582,46416,46475,46840,46899</link.rule.ids></links><search><creatorcontrib>Garcia, Carlos Alberto Eiras</creatorcontrib><creatorcontrib>Garcia, Virginia Maria Tavano</creatorcontrib><creatorcontrib>Dogliotti, Ana Inés</creatorcontrib><creatorcontrib>Ferreira, Amábile</creatorcontrib><creatorcontrib>Romero, Silvia I.</creatorcontrib><creatorcontrib>Mannino, Antonio</creatorcontrib><creatorcontrib>Souza, Marcio S.</creatorcontrib><creatorcontrib>Mata, Mauricio M.</creatorcontrib><title>Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>In January 2008, a patch of high reflectance detected by ocean color satellite images was sampled during a cruise over the southern Argentinean continental shelf. High calcite concentrations (particulate inorganic carbon (PIC)) found at the patch were associated with dominance of the coccolithophorid Emiliania huxleyi. Relatively low chlorophyll concentrations (0.29 to 1.48 mg m−3) were found, but both particulate attenuation (0.27 to 1.15 m−1) and backscattering coefficients at 660 nm (0.003 to 0.042 m−1) were noticeably high. Particulate inorganic to organic carbon (POC) ratio (PIC:POC) was highly variable (0.02 to 1.1), but mostly high, showing a significant correlation with particulate backscattering coefficient at 660 nm (r = 0.83, p < 0.005). The spectral dependency of the backscattering coefficient followed Gordon et al. (2009). Both the time evolution analyses of normalized water leaving radiance at 551 nm (nLw551) and the high PIC:POC ratios suggested an advanced stage of the coccolithophorid bloom, therefore with high detached coccoliths:cell ratios. Moreover, this was supported by a strong correlation between PIC and both particulate backscattering (r = 0.81, p < 0.005) and particulate beam attenuation coefficient (r = 0.7, p < 0.05). Remote sensing reflectance data were strongly related to particle backscattering and backscattering ratio, but not to absorption. NASA operational algorithms overestimated chlorophyll by a factor of ∼2 and estimated PIC with a relatively high root‐mean‐square (RMS) error (RMS = 97.9 μg PIC L−1). Better estimates of PIC values (RMS = 81.5 μg PIC L−1) were achieved when we used the original PIC‐specific backscattering coefficient (Balch et al., 2005).</description><subject>Biological oceanography</subject><subject>Calcite</subject><subject>Chemical oceanography</subject><subject>Chlorophyll</subject><subject>coccolithophorid bloom</subject><subject>Continental shelves</subject><subject>Environmental conditions</subject><subject>Geobiology</subject><subject>Geophysics</subject><subject>Inorganic carbon</subject><subject>Marine</subject><subject>Oceanography</subject><subject>optical properties</subject><subject>Organic carbon</subject><subject>Patagonian shelf</subject><subject>Reflectance</subject><subject>Remote sensing</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90M9rVDEQB_AgFlxqb_4BwZMHn05-vuQoS91aitaiFHoJ2bykm_o2WZOs2v_eyIpID53LHObzHYZB6AWBNwSofkuBwPkSQAotnqAFJUIOlAJ9ihZAuBqA0vEZOqn1DnpxITmQBQqn6UcsOW19anbGLqcptphTxTZNeB3zkHctuj6q8TbZti8e54Btl87lObZN3m1yid3OOW9xTLhtPL60zd7mFG3CdePn8BwdBTtXf_K3H6Ov70-_LM-Gi0-rD8t3F4PlTPEhaDrJICGAnbyT68kFS0cPTqkxACOOS6uV0JytCVkzq7xilBMvuOTMg2fH6NVh767k73tfm9nG6vw82-TzvhqiidZCUsE6ffmA3uV9Sf06oySwvnIkHb0-IFdyrcUHsytxa8u9IWD-vN38__bO2YH_jLO_f9Sa89XVkhA18p4aDqlYm__1L2XLNyNHNgpz_XFlPpOrG3Gjrw1jvwH5PJK_</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Garcia, Carlos Alberto Eiras</creator><creator>Garcia, Virginia Maria Tavano</creator><creator>Dogliotti, Ana Inés</creator><creator>Ferreira, Amábile</creator><creator>Romero, Silvia I.</creator><creator>Mannino, Antonio</creator><creator>Souza, Marcio S.</creator><creator>Mata, Mauricio M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201103</creationdate><title>Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf</title><author>Garcia, Carlos Alberto Eiras ; Garcia, Virginia Maria Tavano ; Dogliotti, Ana Inés ; Ferreira, Amábile ; Romero, Silvia I. ; Mannino, Antonio ; Souza, Marcio S. ; Mata, Mauricio M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4384-f92d6f60f0adec6bdcfa27e0c887f031c46a985943b11b3a8e83241e54643e0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological oceanography</topic><topic>Calcite</topic><topic>Chemical oceanography</topic><topic>Chlorophyll</topic><topic>coccolithophorid bloom</topic><topic>Continental shelves</topic><topic>Environmental conditions</topic><topic>Geobiology</topic><topic>Geophysics</topic><topic>Inorganic carbon</topic><topic>Marine</topic><topic>Oceanography</topic><topic>optical properties</topic><topic>Organic carbon</topic><topic>Patagonian shelf</topic><topic>Reflectance</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Carlos Alberto Eiras</creatorcontrib><creatorcontrib>Garcia, Virginia Maria Tavano</creatorcontrib><creatorcontrib>Dogliotti, Ana Inés</creatorcontrib><creatorcontrib>Ferreira, Amábile</creatorcontrib><creatorcontrib>Romero, Silvia I.</creatorcontrib><creatorcontrib>Mannino, Antonio</creatorcontrib><creatorcontrib>Souza, Marcio S.</creatorcontrib><creatorcontrib>Mata, Mauricio M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Carlos Alberto Eiras</au><au>Garcia, Virginia Maria Tavano</au><au>Dogliotti, Ana Inés</au><au>Ferreira, Amábile</au><au>Romero, Silvia I.</au><au>Mannino, Antonio</au><au>Souza, Marcio S.</au><au>Mata, Mauricio M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-03</date><risdate>2011</risdate><volume>116</volume><issue>C3</issue><epage>n/a</epage><artnum>C03025</artnum><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>In January 2008, a patch of high reflectance detected by ocean color satellite images was sampled during a cruise over the southern Argentinean continental shelf. High calcite concentrations (particulate inorganic carbon (PIC)) found at the patch were associated with dominance of the coccolithophorid Emiliania huxleyi. Relatively low chlorophyll concentrations (0.29 to 1.48 mg m−3) were found, but both particulate attenuation (0.27 to 1.15 m−1) and backscattering coefficients at 660 nm (0.003 to 0.042 m−1) were noticeably high. Particulate inorganic to organic carbon (POC) ratio (PIC:POC) was highly variable (0.02 to 1.1), but mostly high, showing a significant correlation with particulate backscattering coefficient at 660 nm (r = 0.83, p < 0.005). The spectral dependency of the backscattering coefficient followed Gordon et al. (2009). Both the time evolution analyses of normalized water leaving radiance at 551 nm (nLw551) and the high PIC:POC ratios suggested an advanced stage of the coccolithophorid bloom, therefore with high detached coccoliths:cell ratios. Moreover, this was supported by a strong correlation between PIC and both particulate backscattering (r = 0.81, p < 0.005) and particulate beam attenuation coefficient (r = 0.7, p < 0.05). Remote sensing reflectance data were strongly related to particle backscattering and backscattering ratio, but not to absorption. NASA operational algorithms overestimated chlorophyll by a factor of ∼2 and estimated PIC with a relatively high root‐mean‐square (RMS) error (RMS = 97.9 μg PIC L−1). Better estimates of PIC values (RMS = 81.5 μg PIC L−1) were achieved when we used the original PIC‐specific backscattering coefficient (Balch et al., 2005).</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JC006595</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2011-03, Vol.116 (C3), p.n/a, Article C03025 |
issn | 0148-0227 2169-9275 2156-2202 2169-9291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919956253 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Biological oceanography Calcite Chemical oceanography Chlorophyll coccolithophorid bloom Continental shelves Environmental conditions Geobiology Geophysics Inorganic carbon Marine Oceanography optical properties Organic carbon Patagonian shelf Reflectance Remote sensing |
title | Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20conditions%20and%20bio-optical%20signature%20of%20a%20coccolithophorid%20bloom%20in%20the%20Patagonian%20shelf&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Garcia,%20Carlos%20Alberto%20Eiras&rft.date=2011-03&rft.volume=116&rft.issue=C3&rft.epage=n/a&rft.artnum=C03025&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JC006595&rft_dat=%3Cproquest_cross%3E2312732171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860354671&rft_id=info:pmid/&rfr_iscdi=true |