Temporal variations in sea ice resistivity: Resolving anisotropic microstructure through cross-borehole DC resistivity tomography
The distribution and connectivity of brine pockets in first year sea ice has a determining influence on the bulk properties of the ice and its interaction with the environment. The structure of the brine network depends upon both temperature and salinity, and a full understanding of the temporal evo...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Oceans 2010-11, Vol.115 (C11), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | C11 |
container_start_page | |
container_title | Journal of Geophysical Research: Oceans |
container_volume | 115 |
creator | Jones, K. A. Ingham, M. Pringle, D. J. Eicken, H. |
description | The distribution and connectivity of brine pockets in first year sea ice has a determining influence on the bulk properties of the ice and its interaction with the environment. The structure of the brine network depends upon both temperature and salinity, and a full understanding of the temporal evolution of sea ice physical properties requires measurements that are sensitive to the microstructure and can also be made without disturbing the natural state of the ice. Direct current resistivity techniques are suited to this as the brine fraction is orders of magnitude more conductive than solid ice. However, due to the preferential vertical alignment of brine inclusions, the bulk resistivity of first year sea ice is anisotropic. Although this makes the interpretation of surface resistivity soundings extremely difficult, consideration of the theory of resistivity measurements in an anisotropic medium shows that the anisotropic resistivity structure may be resolved through cross‐borehole measurements. Borehole pairs with one current and one potential electrode in each hole allow the determination of the horizontal component of the anisotropic bulk resistivity (ρH). Use of four boreholes allows an estimate of the geometric mean resistivity (ρm) to be derived. Combining these measurements allows calculation of the vertical resistivity (ρV). This is illustrated by measurements made in first year sea ice near Barrow, Alaska in April–June 2008. Over this period significant changes in resistivity are observed which may be shown to be related to both the brine volume fraction and the microstructure of the ice. |
doi_str_mv | 10.1029/2009JC006049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919956219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569608921</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4687-dfdd04bb37f604ed70124fa5c1c261e03763f3877399d7e447d98ffa15c60a0b3</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMoOKx78wMEQfBga-X_xJu0OuuyKAwjeguZdDKTtbvTJt2jc_Sb2-ssy-LBuhQUv_eoV4XQUwKvCFD9mgLoyxpAAtcP0IISIStKgT5ECyB8WQGl6jE6L-Ua5uJCciAL9HvjuyFl2-KDzdGOMfUFxx4Xb3F0HmdfYhnjIY7HN3jtS2oPsd9h28eSxpyG6HAXXU5lzJMbp-zxuM9p2u3xzbBU25T9PrUev6vve-ExdWmX7bA_PkGPgm2LP7_tZ-jLh_eb-qK6-rz6WL-9qiyXS1U1oWmAb7dMhTmhbxQQyoMVjjgqiQemJAtsqRTTulGec9XoZQiWCCfBwpadoRcn3yGnH5Mvo-licb5tbe_TVAzRRGshKdEz-uwf9DpNuZ-3M5ooCUIzNkMvT9DfoNkHM-TY2Xw0BMzNR8z9j8z481tPW5xtQ7a9i-VOQ5kikgkxc-zE_YytP_7X01yu1jUhkqtZVZ1U84H9rzuVzd-NVEwJ8_XTyohv6wsQfGNW7A8WcqrV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917605933</pqid></control><display><type>article</type><title>Temporal variations in sea ice resistivity: Resolving anisotropic microstructure through cross-borehole DC resistivity tomography</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Jones, K. A. ; Ingham, M. ; Pringle, D. J. ; Eicken, H.</creator><creatorcontrib>Jones, K. A. ; Ingham, M. ; Pringle, D. J. ; Eicken, H.</creatorcontrib><description>The distribution and connectivity of brine pockets in first year sea ice has a determining influence on the bulk properties of the ice and its interaction with the environment. The structure of the brine network depends upon both temperature and salinity, and a full understanding of the temporal evolution of sea ice physical properties requires measurements that are sensitive to the microstructure and can also be made without disturbing the natural state of the ice. Direct current resistivity techniques are suited to this as the brine fraction is orders of magnitude more conductive than solid ice. However, due to the preferential vertical alignment of brine inclusions, the bulk resistivity of first year sea ice is anisotropic. Although this makes the interpretation of surface resistivity soundings extremely difficult, consideration of the theory of resistivity measurements in an anisotropic medium shows that the anisotropic resistivity structure may be resolved through cross‐borehole measurements. Borehole pairs with one current and one potential electrode in each hole allow the determination of the horizontal component of the anisotropic bulk resistivity (ρH). Use of four boreholes allows an estimate of the geometric mean resistivity (ρm) to be derived. Combining these measurements allows calculation of the vertical resistivity (ρV). This is illustrated by measurements made in first year sea ice near Barrow, Alaska in April–June 2008. Over this period significant changes in resistivity are observed which may be shown to be related to both the brine volume fraction and the microstructure of the ice.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2009JC006049</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Boreholes ; Brines ; Cryosphere ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; Ice ; Magnetism ; Marine ; Oceans ; Physical properties ; Scientific apparatus & instruments ; Sea ice</subject><ispartof>Journal of Geophysical Research: Oceans, 2010-11, Vol.115 (C11), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4687-dfdd04bb37f604ed70124fa5c1c261e03763f3877399d7e447d98ffa15c60a0b3</citedby><cites>FETCH-LOGICAL-a4687-dfdd04bb37f604ed70124fa5c1c261e03763f3877399d7e447d98ffa15c60a0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JC006049$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JC006049$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23716355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, K. A.</creatorcontrib><creatorcontrib>Ingham, M.</creatorcontrib><creatorcontrib>Pringle, D. J.</creatorcontrib><creatorcontrib>Eicken, H.</creatorcontrib><title>Temporal variations in sea ice resistivity: Resolving anisotropic microstructure through cross-borehole DC resistivity tomography</title><title>Journal of Geophysical Research: Oceans</title><addtitle>J. Geophys. Res</addtitle><description>The distribution and connectivity of brine pockets in first year sea ice has a determining influence on the bulk properties of the ice and its interaction with the environment. The structure of the brine network depends upon both temperature and salinity, and a full understanding of the temporal evolution of sea ice physical properties requires measurements that are sensitive to the microstructure and can also be made without disturbing the natural state of the ice. Direct current resistivity techniques are suited to this as the brine fraction is orders of magnitude more conductive than solid ice. However, due to the preferential vertical alignment of brine inclusions, the bulk resistivity of first year sea ice is anisotropic. Although this makes the interpretation of surface resistivity soundings extremely difficult, consideration of the theory of resistivity measurements in an anisotropic medium shows that the anisotropic resistivity structure may be resolved through cross‐borehole measurements. Borehole pairs with one current and one potential electrode in each hole allow the determination of the horizontal component of the anisotropic bulk resistivity (ρH). Use of four boreholes allows an estimate of the geometric mean resistivity (ρm) to be derived. Combining these measurements allows calculation of the vertical resistivity (ρV). This is illustrated by measurements made in first year sea ice near Barrow, Alaska in April–June 2008. Over this period significant changes in resistivity are observed which may be shown to be related to both the brine volume fraction and the microstructure of the ice.</description><subject>Boreholes</subject><subject>Brines</subject><subject>Cryosphere</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Magnetism</subject><subject>Marine</subject><subject>Oceans</subject><subject>Physical properties</subject><subject>Scientific apparatus & instruments</subject><subject>Sea ice</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU-LFDEQxYMoOKx78wMEQfBga-X_xJu0OuuyKAwjeguZdDKTtbvTJt2jc_Sb2-ssy-LBuhQUv_eoV4XQUwKvCFD9mgLoyxpAAtcP0IISIStKgT5ECyB8WQGl6jE6L-Ua5uJCciAL9HvjuyFl2-KDzdGOMfUFxx4Xb3F0HmdfYhnjIY7HN3jtS2oPsd9h28eSxpyG6HAXXU5lzJMbp-zxuM9p2u3xzbBU25T9PrUev6vve-ExdWmX7bA_PkGPgm2LP7_tZ-jLh_eb-qK6-rz6WL-9qiyXS1U1oWmAb7dMhTmhbxQQyoMVjjgqiQemJAtsqRTTulGec9XoZQiWCCfBwpadoRcn3yGnH5Mvo-licb5tbe_TVAzRRGshKdEz-uwf9DpNuZ-3M5ooCUIzNkMvT9DfoNkHM-TY2Xw0BMzNR8z9j8z481tPW5xtQ7a9i-VOQ5kikgkxc-zE_YytP_7X01yu1jUhkqtZVZ1U84H9rzuVzd-NVEwJ8_XTyohv6wsQfGNW7A8WcqrV</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Jones, K. A.</creator><creator>Ingham, M.</creator><creator>Pringle, D. J.</creator><creator>Eicken, H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201011</creationdate><title>Temporal variations in sea ice resistivity: Resolving anisotropic microstructure through cross-borehole DC resistivity tomography</title><author>Jones, K. A. ; Ingham, M. ; Pringle, D. J. ; Eicken, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4687-dfdd04bb37f604ed70124fa5c1c261e03763f3877399d7e447d98ffa15c60a0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boreholes</topic><topic>Brines</topic><topic>Cryosphere</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Magnetism</topic><topic>Marine</topic><topic>Oceans</topic><topic>Physical properties</topic><topic>Scientific apparatus & instruments</topic><topic>Sea ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, K. A.</creatorcontrib><creatorcontrib>Ingham, M.</creatorcontrib><creatorcontrib>Pringle, D. J.</creatorcontrib><creatorcontrib>Eicken, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, K. A.</au><au>Ingham, M.</au><au>Pringle, D. J.</au><au>Eicken, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal variations in sea ice resistivity: Resolving anisotropic microstructure through cross-borehole DC resistivity tomography</atitle><jtitle>Journal of Geophysical Research: Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-11</date><risdate>2010</risdate><volume>115</volume><issue>C11</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>The distribution and connectivity of brine pockets in first year sea ice has a determining influence on the bulk properties of the ice and its interaction with the environment. The structure of the brine network depends upon both temperature and salinity, and a full understanding of the temporal evolution of sea ice physical properties requires measurements that are sensitive to the microstructure and can also be made without disturbing the natural state of the ice. Direct current resistivity techniques are suited to this as the brine fraction is orders of magnitude more conductive than solid ice. However, due to the preferential vertical alignment of brine inclusions, the bulk resistivity of first year sea ice is anisotropic. Although this makes the interpretation of surface resistivity soundings extremely difficult, consideration of the theory of resistivity measurements in an anisotropic medium shows that the anisotropic resistivity structure may be resolved through cross‐borehole measurements. Borehole pairs with one current and one potential electrode in each hole allow the determination of the horizontal component of the anisotropic bulk resistivity (ρH). Use of four boreholes allows an estimate of the geometric mean resistivity (ρm) to be derived. Combining these measurements allows calculation of the vertical resistivity (ρV). This is illustrated by measurements made in first year sea ice near Barrow, Alaska in April–June 2008. Over this period significant changes in resistivity are observed which may be shown to be related to both the brine volume fraction and the microstructure of the ice.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JC006049</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Oceans, 2010-11, Vol.115 (C11), p.n/a |
issn | 0148-0227 2169-9275 2156-2202 2169-9291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919956219 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection |
subjects | Boreholes Brines Cryosphere Earth sciences Earth, ocean, space Exact sciences and technology Geophysics Ice Magnetism Marine Oceans Physical properties Scientific apparatus & instruments Sea ice |
title | Temporal variations in sea ice resistivity: Resolving anisotropic microstructure through cross-borehole DC resistivity tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20variations%20in%20sea%20ice%20resistivity:%20Resolving%20anisotropic%20microstructure%20through%20cross-borehole%20DC%20resistivity%20tomography&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Oceans&rft.au=Jones,%20K.%20A.&rft.date=2010-11&rft.volume=115&rft.issue=C11&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JC006049&rft_dat=%3Cproquest_cross%3E2569608921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917605933&rft_id=info:pmid/&rfr_iscdi=true |