Ocean wave spectrum properties as derived from quasi-exact computations of nonlinear wave-wave interactions
The estimation of nonlinear wave‐wave interactions is one of the central problems in the development of operational and research models for ocean wave prediction. In this paper, we present results obtained with a numerical model based on a quasi‐exact computation of the nonlinear wave‐wave interacti...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Oceans 2010-12, Vol.115 (C12), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | C12 |
container_start_page | |
container_title | Journal of Geophysical Research: Oceans |
container_volume | 115 |
creator | Gagnaire-Renou, E. Benoit, M. Forget, P. |
description | The estimation of nonlinear wave‐wave interactions is one of the central problems in the development of operational and research models for ocean wave prediction. In this paper, we present results obtained with a numerical model based on a quasi‐exact computation of the nonlinear wave‐wave interactions called the Gaussian quadrature method (GQM) that gives both precise and computationally efficient calculations of the four‐wave interactions. Two situations are presented: a purely nonlinear evolution of the spectrum and a duration‐limited case. Properties of the directional wave spectrum obtained using GQM and the Discrete Interaction Approximation Method (DIM) are compared. Different expressions for the wind input and dissipation terms are considered. Our results are consistent with theoretical predictions. In particular, they reproduce the self‐similar evolution of the spectrum. The bimodality of the directional distribution of the spectrum at frequencies lower and greater than the peak frequency is shown to be a strong feature of the sea states, which is consistent with high‐resolution field measurements. Results show that nonlinear interactions constitute the key mechanism responsible for bimodality, but forcing terms also have a quantitative effect on the directional distribution of the spectrum. The influence of wind and dissipation parameterizations on the high‐frequency shape of the spectrum is also highlighted. The imposition of a parametric high‐frequency tail has a significant effect not only on the high‐frequency shape of the spectrum but also on the energy level and peak period and on the global directional distribution. |
doi_str_mv | 10.1029/2009JC005665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919954626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569609241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4584-7046a15e5e8c2a30306bf0b3a85caf68a253f906bcb85c7c17205f4bc72b5143</originalsourceid><addsrcrecordid>eNp90VtrFTEQB_ClKHiofesHCBXBB1cn2Vx2H2X1HC3FQlvsY5hNZyHt3prs9vLtzekpRQSdl8Dwmz9JJssOOXziIKrPAqA6rgGU1movWwmudC4EiFfZCrgscxDCvMkOYryGVFJpCXyV3Zw6woHd4x2xOJGbw9KzKYwThdlTZBjZFQV_R1esDWPPbheMPqcHdDNzYz8tM85-HCIbWzaMQ-cHwvAUlz9l-mGmkPDWvM1et9hFOng-97OL9beL-nt-crr5UX85yVGqUuYGpEauSFHpBBZQgG5aaAoslcNWlyhU0Vap6ZrUMY4bAaqVjTOiUVwW-9mHXWx6xu1Ccba9j466Dgcal2h5xatKSS10okd_0etxCUO6nK240TzVFr37FxLalFIpMCapjzvlwhhjoNZOwfcYHi0Hu12Q_XNBib9_DsXosGsDDs7HlxlRlEJqXSZX7Ny97-jxv5n2eHNWc65g-wX5bsrHmR5epjDcWG0Ko-zlz42t17_OLtdfz-2m-A3bw60w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917611116</pqid></control><display><type>article</type><title>Ocean wave spectrum properties as derived from quasi-exact computations of nonlinear wave-wave interactions</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Gagnaire-Renou, E. ; Benoit, M. ; Forget, P.</creator><creatorcontrib>Gagnaire-Renou, E. ; Benoit, M. ; Forget, P.</creatorcontrib><description>The estimation of nonlinear wave‐wave interactions is one of the central problems in the development of operational and research models for ocean wave prediction. In this paper, we present results obtained with a numerical model based on a quasi‐exact computation of the nonlinear wave‐wave interactions called the Gaussian quadrature method (GQM) that gives both precise and computationally efficient calculations of the four‐wave interactions. Two situations are presented: a purely nonlinear evolution of the spectrum and a duration‐limited case. Properties of the directional wave spectrum obtained using GQM and the Discrete Interaction Approximation Method (DIM) are compared. Different expressions for the wind input and dissipation terms are considered. Our results are consistent with theoretical predictions. In particular, they reproduce the self‐similar evolution of the spectrum. The bimodality of the directional distribution of the spectrum at frequencies lower and greater than the peak frequency is shown to be a strong feature of the sea states, which is consistent with high‐resolution field measurements. Results show that nonlinear interactions constitute the key mechanism responsible for bimodality, but forcing terms also have a quantitative effect on the directional distribution of the spectrum. The influence of wind and dissipation parameterizations on the high‐frequency shape of the spectrum is also highlighted. The imposition of a parametric high‐frequency tail has a significant effect not only on the high‐frequency shape of the spectrum but also on the energy level and peak period and on the global directional distribution.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2009JC005665</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Approximation ; Approximation method ; Computation ; Dissipation ; Distribution ; Earth sciences ; Earth, ocean, space ; Energy levels ; Evolution ; Exact sciences and technology ; Geophysics ; Marine ; Mathematical models ; nonlinear interactions ; Nonlinear systems ; Nonlinear waves ; Numerical models ; Ocean models ; Ocean waves ; Oceans ; Peak frequency ; Physical oceanography ; Properties ; Quadratures ; Sea state ; Sea states ; Shape ; Wave interaction ; Wave interactions ; Wave predicting ; Wave spectra ; wave spectrum ; Wind ; Wind effects</subject><ispartof>Journal of Geophysical Research: Oceans, 2010-12, Vol.115 (C12), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2010</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4584-7046a15e5e8c2a30306bf0b3a85caf68a253f906bcb85c7c17205f4bc72b5143</citedby><cites>FETCH-LOGICAL-a4584-7046a15e5e8c2a30306bf0b3a85caf68a253f906bcb85c7c17205f4bc72b5143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JC005665$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JC005665$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23824668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gagnaire-Renou, E.</creatorcontrib><creatorcontrib>Benoit, M.</creatorcontrib><creatorcontrib>Forget, P.</creatorcontrib><title>Ocean wave spectrum properties as derived from quasi-exact computations of nonlinear wave-wave interactions</title><title>Journal of Geophysical Research: Oceans</title><addtitle>J. Geophys. Res</addtitle><description>The estimation of nonlinear wave‐wave interactions is one of the central problems in the development of operational and research models for ocean wave prediction. In this paper, we present results obtained with a numerical model based on a quasi‐exact computation of the nonlinear wave‐wave interactions called the Gaussian quadrature method (GQM) that gives both precise and computationally efficient calculations of the four‐wave interactions. Two situations are presented: a purely nonlinear evolution of the spectrum and a duration‐limited case. Properties of the directional wave spectrum obtained using GQM and the Discrete Interaction Approximation Method (DIM) are compared. Different expressions for the wind input and dissipation terms are considered. Our results are consistent with theoretical predictions. In particular, they reproduce the self‐similar evolution of the spectrum. The bimodality of the directional distribution of the spectrum at frequencies lower and greater than the peak frequency is shown to be a strong feature of the sea states, which is consistent with high‐resolution field measurements. Results show that nonlinear interactions constitute the key mechanism responsible for bimodality, but forcing terms also have a quantitative effect on the directional distribution of the spectrum. The influence of wind and dissipation parameterizations on the high‐frequency shape of the spectrum is also highlighted. The imposition of a parametric high‐frequency tail has a significant effect not only on the high‐frequency shape of the spectrum but also on the energy level and peak period and on the global directional distribution.</description><subject>Approximation</subject><subject>Approximation method</subject><subject>Computation</subject><subject>Dissipation</subject><subject>Distribution</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy levels</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>nonlinear interactions</subject><subject>Nonlinear systems</subject><subject>Nonlinear waves</subject><subject>Numerical models</subject><subject>Ocean models</subject><subject>Ocean waves</subject><subject>Oceans</subject><subject>Peak frequency</subject><subject>Physical oceanography</subject><subject>Properties</subject><subject>Quadratures</subject><subject>Sea state</subject><subject>Sea states</subject><subject>Shape</subject><subject>Wave interaction</subject><subject>Wave interactions</subject><subject>Wave predicting</subject><subject>Wave spectra</subject><subject>wave spectrum</subject><subject>Wind</subject><subject>Wind effects</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90VtrFTEQB_ClKHiofesHCBXBB1cn2Vx2H2X1HC3FQlvsY5hNZyHt3prs9vLtzekpRQSdl8Dwmz9JJssOOXziIKrPAqA6rgGU1movWwmudC4EiFfZCrgscxDCvMkOYryGVFJpCXyV3Zw6woHd4x2xOJGbw9KzKYwThdlTZBjZFQV_R1esDWPPbheMPqcHdDNzYz8tM85-HCIbWzaMQ-cHwvAUlz9l-mGmkPDWvM1et9hFOng-97OL9beL-nt-crr5UX85yVGqUuYGpEauSFHpBBZQgG5aaAoslcNWlyhU0Vap6ZrUMY4bAaqVjTOiUVwW-9mHXWx6xu1Ccba9j466Dgcal2h5xatKSS10okd_0etxCUO6nK240TzVFr37FxLalFIpMCapjzvlwhhjoNZOwfcYHi0Hu12Q_XNBib9_DsXosGsDDs7HlxlRlEJqXSZX7Ny97-jxv5n2eHNWc65g-wX5bsrHmR5epjDcWG0Ko-zlz42t17_OLtdfz-2m-A3bw60w</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Gagnaire-Renou, E.</creator><creator>Benoit, M.</creator><creator>Forget, P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201012</creationdate><title>Ocean wave spectrum properties as derived from quasi-exact computations of nonlinear wave-wave interactions</title><author>Gagnaire-Renou, E. ; Benoit, M. ; Forget, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4584-7046a15e5e8c2a30306bf0b3a85caf68a253f906bcb85c7c17205f4bc72b5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Approximation method</topic><topic>Computation</topic><topic>Dissipation</topic><topic>Distribution</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy levels</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>nonlinear interactions</topic><topic>Nonlinear systems</topic><topic>Nonlinear waves</topic><topic>Numerical models</topic><topic>Ocean models</topic><topic>Ocean waves</topic><topic>Oceans</topic><topic>Peak frequency</topic><topic>Physical oceanography</topic><topic>Properties</topic><topic>Quadratures</topic><topic>Sea state</topic><topic>Sea states</topic><topic>Shape</topic><topic>Wave interaction</topic><topic>Wave interactions</topic><topic>Wave predicting</topic><topic>Wave spectra</topic><topic>wave spectrum</topic><topic>Wind</topic><topic>Wind effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagnaire-Renou, E.</creatorcontrib><creatorcontrib>Benoit, M.</creatorcontrib><creatorcontrib>Forget, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagnaire-Renou, E.</au><au>Benoit, M.</au><au>Forget, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean wave spectrum properties as derived from quasi-exact computations of nonlinear wave-wave interactions</atitle><jtitle>Journal of Geophysical Research: Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-12</date><risdate>2010</risdate><volume>115</volume><issue>C12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>The estimation of nonlinear wave‐wave interactions is one of the central problems in the development of operational and research models for ocean wave prediction. In this paper, we present results obtained with a numerical model based on a quasi‐exact computation of the nonlinear wave‐wave interactions called the Gaussian quadrature method (GQM) that gives both precise and computationally efficient calculations of the four‐wave interactions. Two situations are presented: a purely nonlinear evolution of the spectrum and a duration‐limited case. Properties of the directional wave spectrum obtained using GQM and the Discrete Interaction Approximation Method (DIM) are compared. Different expressions for the wind input and dissipation terms are considered. Our results are consistent with theoretical predictions. In particular, they reproduce the self‐similar evolution of the spectrum. The bimodality of the directional distribution of the spectrum at frequencies lower and greater than the peak frequency is shown to be a strong feature of the sea states, which is consistent with high‐resolution field measurements. Results show that nonlinear interactions constitute the key mechanism responsible for bimodality, but forcing terms also have a quantitative effect on the directional distribution of the spectrum. The influence of wind and dissipation parameterizations on the high‐frequency shape of the spectrum is also highlighted. The imposition of a parametric high‐frequency tail has a significant effect not only on the high‐frequency shape of the spectrum but also on the energy level and peak period and on the global directional distribution.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JC005665</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Oceans, 2010-12, Vol.115 (C12), p.n/a |
issn | 0148-0227 2169-9275 2156-2202 2169-9291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919954626 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Approximation Approximation method Computation Dissipation Distribution Earth sciences Earth, ocean, space Energy levels Evolution Exact sciences and technology Geophysics Marine Mathematical models nonlinear interactions Nonlinear systems Nonlinear waves Numerical models Ocean models Ocean waves Oceans Peak frequency Physical oceanography Properties Quadratures Sea state Sea states Shape Wave interaction Wave interactions Wave predicting Wave spectra wave spectrum Wind Wind effects |
title | Ocean wave spectrum properties as derived from quasi-exact computations of nonlinear wave-wave interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20wave%20spectrum%20properties%20as%20derived%20from%20quasi-exact%20computations%20of%20nonlinear%20wave-wave%20interactions&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Oceans&rft.au=Gagnaire-Renou,%20E.&rft.date=2010-12&rft.volume=115&rft.issue=C12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JC005665&rft_dat=%3Cproquest_cross%3E2569609241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917611116&rft_id=info:pmid/&rfr_iscdi=true |