Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition

Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary science letters 2014-10, Vol.403, p.432-445
Hauptverfasser: Melosh, Ben L., Rowe, Christie D., Smit, Louis, Groenewald, Conrad, Lambert, Christopher W., Macey, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue
container_start_page 432
container_title Earth and planetary science letters
container_volume 403
creator Melosh, Ben L.
Rowe, Christie D.
Smit, Louis
Groenewald, Conrad
Lambert, Christopher W.
Macey, Paul
description Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enable a new tool for identifying paleoseismic slip surfaces in the rock record. Using previous experimental and theoretical predictions, we develop a field-based model of dynamic dilational breccia formation. Experimental studies find that secondary tensile fracture networks comprise closely spaced fractures at angles of 70–90° from a slip surface, as well as fractures that branch at angles of ∼30° from a primary mode I fracture. The Pofadder Shear Zone, in Namibia and South Africa, preserves breccias formed in the brittle–ductile transition zone displaying fracture patterns consistent with those described above. Fracture spacing is approximately two orders of magnitude less than predicted by quasi-static models. Breccias are clast-supported, monomict and can display an abrupt transition from fracture network crackle breccia to mosaic breccia textures. Brecciation occurs by the intersection of off-fault dynamic fractures and wall rock fabric; this is in contrast to previous models of fluid pressure gradient-driven failure “implosion breccias”. This mechanism tends to form many similar sized clasts with particle size distributions that may not display self-similarity; where self-similarity is observed the distributions have relatively low D-values of 1.47±0.37, similar to other studies of dynamic processes. We measure slip distances at dilational breccia stepovers, estimating earthquake magnitudes between Mw 2.8–5.8 and associated rupture lengths of 0.023–3.3 km. The small calculated rupture dimensions, in combination with our geologic observations, suggest that some earthquakes nucleated within the quartz-plastic transitional zone and potentially record deep seismic slip. •Dynamic breccias have distinct fracture spacings, geometries and clast sizes.•Dynamic breccias leave a fingerprint of earthquakes in the rock record.•We describe and quantify dynamic breccia to develop a paleoseismic tool.•Breccia forming earthquakes nucleated on a deep strike slip fault.
doi_str_mv 10.1016/j.epsl.2014.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919953692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X14004440</els_id><sourcerecordid>1919953692</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-2a2387dc7cf00ee75a8f228d5b22993da54d7c8b52314705e3986b1aea277b0f3</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpoNOkL9CVll3EzpU0tqzSTZnmDwIJpIXsxLV8TTTV2K6kScku75A3zJPUw3SdrM7mOwfu_Rj7LKAUIOqTdUlTCqUEsSxBlwDyHVsI1VQFCHX3ni0AhCwaKe4-sI8prQGgrmqzYPe3A07HfBXR_Q50zG_G6Sv_4QNmPw4YeI_bkHkbyTmPic85xo4n8mnjHU_BT7ylMP7l-Z5mzOcc6OXpeQqY8gzkiEPyu60jdtBjSPTpfx6yX2enP1cXxdX1-eXq-1WBqjG5kChVozunXQ9ApCtseimbrmqlNEZ1WC077Zq2kkosNVSkTFO3Agml1i306pB92e9OcfyzpZTtxidHIeBA4zZZYYQxlaqNfButl1KKWmiYUblHXRxTitTbKfoNxkcrwO4M2LXdGbA7Axa0nQ3MpW_7Es33PniKNjlPg6POz3_Mthv9a_V_EkqQrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642216170</pqid></control><display><type>article</type><title>Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Melosh, Ben L. ; Rowe, Christie D. ; Smit, Louis ; Groenewald, Conrad ; Lambert, Christopher W. ; Macey, Paul</creator><creatorcontrib>Melosh, Ben L. ; Rowe, Christie D. ; Smit, Louis ; Groenewald, Conrad ; Lambert, Christopher W. ; Macey, Paul</creatorcontrib><description>Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enable a new tool for identifying paleoseismic slip surfaces in the rock record. Using previous experimental and theoretical predictions, we develop a field-based model of dynamic dilational breccia formation. Experimental studies find that secondary tensile fracture networks comprise closely spaced fractures at angles of 70–90° from a slip surface, as well as fractures that branch at angles of ∼30° from a primary mode I fracture. The Pofadder Shear Zone, in Namibia and South Africa, preserves breccias formed in the brittle–ductile transition zone displaying fracture patterns consistent with those described above. Fracture spacing is approximately two orders of magnitude less than predicted by quasi-static models. Breccias are clast-supported, monomict and can display an abrupt transition from fracture network crackle breccia to mosaic breccia textures. Brecciation occurs by the intersection of off-fault dynamic fractures and wall rock fabric; this is in contrast to previous models of fluid pressure gradient-driven failure “implosion breccias”. This mechanism tends to form many similar sized clasts with particle size distributions that may not display self-similarity; where self-similarity is observed the distributions have relatively low D-values of 1.47±0.37, similar to other studies of dynamic processes. We measure slip distances at dilational breccia stepovers, estimating earthquake magnitudes between Mw 2.8–5.8 and associated rupture lengths of 0.023–3.3 km. The small calculated rupture dimensions, in combination with our geologic observations, suggest that some earthquakes nucleated within the quartz-plastic transitional zone and potentially record deep seismic slip. •Dynamic breccias have distinct fracture spacings, geometries and clast sizes.•Dynamic breccias leave a fingerprint of earthquakes in the rock record.•We describe and quantify dynamic breccia to develop a paleoseismic tool.•Breccia forming earthquakes nucleated on a deep strike slip fault.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2014.07.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Breccia ; brittle–plastic transition ; dilational fault breccia ; Ductile brittle transition ; dynamic fracture ; Dynamics ; earthquake ; Fracture mechanics ; Mathematical models ; paleoseismic tool ; particle size distribution ; Rupture ; Seismic phenomena ; Slip</subject><ispartof>Earth and planetary science letters, 2014-10, Vol.403, p.432-445</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-2a2387dc7cf00ee75a8f228d5b22993da54d7c8b52314705e3986b1aea277b0f3</citedby><cites>FETCH-LOGICAL-a389t-2a2387dc7cf00ee75a8f228d5b22993da54d7c8b52314705e3986b1aea277b0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012821X14004440$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Melosh, Ben L.</creatorcontrib><creatorcontrib>Rowe, Christie D.</creatorcontrib><creatorcontrib>Smit, Louis</creatorcontrib><creatorcontrib>Groenewald, Conrad</creatorcontrib><creatorcontrib>Lambert, Christopher W.</creatorcontrib><creatorcontrib>Macey, Paul</creatorcontrib><title>Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition</title><title>Earth and planetary science letters</title><description>Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enable a new tool for identifying paleoseismic slip surfaces in the rock record. Using previous experimental and theoretical predictions, we develop a field-based model of dynamic dilational breccia formation. Experimental studies find that secondary tensile fracture networks comprise closely spaced fractures at angles of 70–90° from a slip surface, as well as fractures that branch at angles of ∼30° from a primary mode I fracture. The Pofadder Shear Zone, in Namibia and South Africa, preserves breccias formed in the brittle–ductile transition zone displaying fracture patterns consistent with those described above. Fracture spacing is approximately two orders of magnitude less than predicted by quasi-static models. Breccias are clast-supported, monomict and can display an abrupt transition from fracture network crackle breccia to mosaic breccia textures. Brecciation occurs by the intersection of off-fault dynamic fractures and wall rock fabric; this is in contrast to previous models of fluid pressure gradient-driven failure “implosion breccias”. This mechanism tends to form many similar sized clasts with particle size distributions that may not display self-similarity; where self-similarity is observed the distributions have relatively low D-values of 1.47±0.37, similar to other studies of dynamic processes. We measure slip distances at dilational breccia stepovers, estimating earthquake magnitudes between Mw 2.8–5.8 and associated rupture lengths of 0.023–3.3 km. The small calculated rupture dimensions, in combination with our geologic observations, suggest that some earthquakes nucleated within the quartz-plastic transitional zone and potentially record deep seismic slip. •Dynamic breccias have distinct fracture spacings, geometries and clast sizes.•Dynamic breccias leave a fingerprint of earthquakes in the rock record.•We describe and quantify dynamic breccia to develop a paleoseismic tool.•Breccia forming earthquakes nucleated on a deep strike slip fault.</description><subject>Breccia</subject><subject>brittle–plastic transition</subject><subject>dilational fault breccia</subject><subject>Ductile brittle transition</subject><subject>dynamic fracture</subject><subject>Dynamics</subject><subject>earthquake</subject><subject>Fracture mechanics</subject><subject>Mathematical models</subject><subject>paleoseismic tool</subject><subject>particle size distribution</subject><subject>Rupture</subject><subject>Seismic phenomena</subject><subject>Slip</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpoNOkL9CVll3EzpU0tqzSTZnmDwIJpIXsxLV8TTTV2K6kScku75A3zJPUw3SdrM7mOwfu_Rj7LKAUIOqTdUlTCqUEsSxBlwDyHVsI1VQFCHX3ni0AhCwaKe4-sI8prQGgrmqzYPe3A07HfBXR_Q50zG_G6Sv_4QNmPw4YeI_bkHkbyTmPic85xo4n8mnjHU_BT7ylMP7l-Z5mzOcc6OXpeQqY8gzkiEPyu60jdtBjSPTpfx6yX2enP1cXxdX1-eXq-1WBqjG5kChVozunXQ9ApCtseimbrmqlNEZ1WC077Zq2kkosNVSkTFO3Agml1i306pB92e9OcfyzpZTtxidHIeBA4zZZYYQxlaqNfButl1KKWmiYUblHXRxTitTbKfoNxkcrwO4M2LXdGbA7Axa0nQ3MpW_7Es33PniKNjlPg6POz3_Mthv9a_V_EkqQrA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Melosh, Ben L.</creator><creator>Rowe, Christie D.</creator><creator>Smit, Louis</creator><creator>Groenewald, Conrad</creator><creator>Lambert, Christopher W.</creator><creator>Macey, Paul</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20141001</creationdate><title>Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition</title><author>Melosh, Ben L. ; Rowe, Christie D. ; Smit, Louis ; Groenewald, Conrad ; Lambert, Christopher W. ; Macey, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-2a2387dc7cf00ee75a8f228d5b22993da54d7c8b52314705e3986b1aea277b0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Breccia</topic><topic>brittle–plastic transition</topic><topic>dilational fault breccia</topic><topic>Ductile brittle transition</topic><topic>dynamic fracture</topic><topic>Dynamics</topic><topic>earthquake</topic><topic>Fracture mechanics</topic><topic>Mathematical models</topic><topic>paleoseismic tool</topic><topic>particle size distribution</topic><topic>Rupture</topic><topic>Seismic phenomena</topic><topic>Slip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melosh, Ben L.</creatorcontrib><creatorcontrib>Rowe, Christie D.</creatorcontrib><creatorcontrib>Smit, Louis</creatorcontrib><creatorcontrib>Groenewald, Conrad</creatorcontrib><creatorcontrib>Lambert, Christopher W.</creatorcontrib><creatorcontrib>Macey, Paul</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melosh, Ben L.</au><au>Rowe, Christie D.</au><au>Smit, Louis</au><au>Groenewald, Conrad</au><au>Lambert, Christopher W.</au><au>Macey, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition</atitle><jtitle>Earth and planetary science letters</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>403</volume><spage>432</spage><epage>445</epage><pages>432-445</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enable a new tool for identifying paleoseismic slip surfaces in the rock record. Using previous experimental and theoretical predictions, we develop a field-based model of dynamic dilational breccia formation. Experimental studies find that secondary tensile fracture networks comprise closely spaced fractures at angles of 70–90° from a slip surface, as well as fractures that branch at angles of ∼30° from a primary mode I fracture. The Pofadder Shear Zone, in Namibia and South Africa, preserves breccias formed in the brittle–ductile transition zone displaying fracture patterns consistent with those described above. Fracture spacing is approximately two orders of magnitude less than predicted by quasi-static models. Breccias are clast-supported, monomict and can display an abrupt transition from fracture network crackle breccia to mosaic breccia textures. Brecciation occurs by the intersection of off-fault dynamic fractures and wall rock fabric; this is in contrast to previous models of fluid pressure gradient-driven failure “implosion breccias”. This mechanism tends to form many similar sized clasts with particle size distributions that may not display self-similarity; where self-similarity is observed the distributions have relatively low D-values of 1.47±0.37, similar to other studies of dynamic processes. We measure slip distances at dilational breccia stepovers, estimating earthquake magnitudes between Mw 2.8–5.8 and associated rupture lengths of 0.023–3.3 km. The small calculated rupture dimensions, in combination with our geologic observations, suggest that some earthquakes nucleated within the quartz-plastic transitional zone and potentially record deep seismic slip. •Dynamic breccias have distinct fracture spacings, geometries and clast sizes.•Dynamic breccias leave a fingerprint of earthquakes in the rock record.•We describe and quantify dynamic breccia to develop a paleoseismic tool.•Breccia forming earthquakes nucleated on a deep strike slip fault.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2014.07.002</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2014-10, Vol.403, p.432-445
issn 0012-821X
1385-013X
language eng
recordid cdi_proquest_miscellaneous_1919953692
source Elsevier ScienceDirect Journals Complete
subjects Breccia
brittle–plastic transition
dilational fault breccia
Ductile brittle transition
dynamic fracture
Dynamics
earthquake
Fracture mechanics
Mathematical models
paleoseismic tool
particle size distribution
Rupture
Seismic phenomena
Slip
title Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Snap,%20Crackle,%20Pop:%20Dilational%20fault%20breccias%20record%20seismic%20slip%20below%20the%20brittle%E2%80%93plastic%20transition&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Melosh,%20Ben%20L.&rft.date=2014-10-01&rft.volume=403&rft.spage=432&rft.epage=445&rft.pages=432-445&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2014.07.002&rft_dat=%3Cproquest_cross%3E1919953692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642216170&rft_id=info:pmid/&rft_els_id=S0012821X14004440&rfr_iscdi=true