A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing
A 38 kHz vessel‐mounted acoustic Doppler current profiler is used to explore in detail the dynamics of an anticyclonic and a cyclonic eddy during two transits of the cruise vessel Explorer of the Seas from the Caribbean to New Jersey in July 2007. The radial scale of the two eddies is similar, but w...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2011-12, Vol.116 (C12), p.n/a, Article C12017 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | C12 |
container_start_page | |
container_title | Journal of Geophysical Research |
container_volume | 116 |
creator | Rossby, T. Flagg, C. Ortner, P. Hu, C. |
description | A 38 kHz vessel‐mounted acoustic Doppler current profiler is used to explore in detail the dynamics of an anticyclonic and a cyclonic eddy during two transits of the cruise vessel Explorer of the Seas from the Caribbean to New Jersey in July 2007. The radial scale of the two eddies is similar, but whereas the cyclone is strongly surface intensified, the anticyclone has its maximum expression with near–solid body rotation between 200 and 800 m depth. The anticyclone has a minimum in relative vorticity very close to −f at 800 m depth and the cyclone has a maximum of about +1.6 f close to the surface where f is the local Coriolis parameter. By integrating the momentum equation the geopotential anomaly field and hence the potential energy of the eddies can be determined quite accurately, which means that the kinetic and potential energy of the eddies can be determined purely through acoustic remote sensing. Given a density profile just outside the eddy one can integrate the gradient wind equation to obtain an estimate of the density and hence potential vorticity fields through the two eddies. The acoustic backscatter patterns in the eddies are quite distinct from the surrounding waters. The backscatter intensity of the main scattering layer at ∼600 m depth decreases by ∼10 dB in the core of both eddies. In the cyclonic eddy three identifiable scattering layers in the main thermocline show a strong tendency for the scattering layer to track the shoaling density structure toward the center of the eddy.
Key Points
Power of acoustic remote sensing of currents and biomass
Quantitative assessment of eddy vorticity and energetics
Highly structured biomass patterns in eddies |
doi_str_mv | 10.1029/2011JC007307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919952143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618998941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4389-71b9e63ba565305483555745996c434987164db329f69317c606c3a0b8fa2b343</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgChb15g8Injy4OpPPjTdptSqiIn4cQ3abbVe3G022VP-9KxURD85lDvO8wzCE7CIcIjBzxADxcgigOeg1MmAoVcYYsHUyABR5BozpTbKT0jP0JaQSgANye0I713gaKtotA_WTSe3TMR3VbtqGVLdTWoaZj77tvme0m8WwmM6oK8MidXVJo5-HztPk2y-_TTYq1yS_8923yMPZ6f3wPLu6GV8MT64yJ3huMo2F8YoXTirJQYqcSym1kMaoUnBhco1KTArOTKUMR10qUCV3UOSVYwUXfIvsr_a-xvC28Kmz8zqVvmlc6_vDLBo0RjIUvKd7f-hzWMS2v84aAUbnTECPDlaojCGl6Cv7Guu5ix8WwX492P5-cM_5ii_rxn_8a-3l-G6IjKHpU9kqVafOv_-kXHyxSnMt7dP12LKRvmaPo3uL_BMBCIe7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>940978240</pqid></control><display><type>article</type><title>A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Rossby, T. ; Flagg, C. ; Ortner, P. ; Hu, C.</creator><creatorcontrib>Rossby, T. ; Flagg, C. ; Ortner, P. ; Hu, C.</creatorcontrib><description>A 38 kHz vessel‐mounted acoustic Doppler current profiler is used to explore in detail the dynamics of an anticyclonic and a cyclonic eddy during two transits of the cruise vessel Explorer of the Seas from the Caribbean to New Jersey in July 2007. The radial scale of the two eddies is similar, but whereas the cyclone is strongly surface intensified, the anticyclone has its maximum expression with near–solid body rotation between 200 and 800 m depth. The anticyclone has a minimum in relative vorticity very close to −f at 800 m depth and the cyclone has a maximum of about +1.6 f close to the surface where f is the local Coriolis parameter. By integrating the momentum equation the geopotential anomaly field and hence the potential energy of the eddies can be determined quite accurately, which means that the kinetic and potential energy of the eddies can be determined purely through acoustic remote sensing. Given a density profile just outside the eddy one can integrate the gradient wind equation to obtain an estimate of the density and hence potential vorticity fields through the two eddies. The acoustic backscatter patterns in the eddies are quite distinct from the surrounding waters. The backscatter intensity of the main scattering layer at ∼600 m depth decreases by ∼10 dB in the core of both eddies. In the cyclonic eddy three identifiable scattering layers in the main thermocline show a strong tendency for the scattering layer to track the shoaling density structure toward the center of the eddy.
Key Points
Power of acoustic remote sensing of currents and biomass
Quantitative assessment of eddy vorticity and energetics
Highly structured biomass patterns in eddies</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2011JC007307</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>acoustic remote sensing ; ADCP ; Biological oceanography ; Chemical oceanography ; Cyclones ; Eddies ; Geophysics ; Marine ; mesoscale dynamics ; Momentum equation ; Oceanography ; Physical oceanography ; Potential energy ; Remote sensing ; Scientific apparatus & instruments ; ships of opportunity ; Thermocline</subject><ispartof>Journal of Geophysical Research, 2011-12, Vol.116 (C12), p.n/a, Article C12017</ispartof><rights>Copyright 2011 by the American Geophysical Union</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4389-71b9e63ba565305483555745996c434987164db329f69317c606c3a0b8fa2b343</citedby><cites>FETCH-LOGICAL-a4389-71b9e63ba565305483555745996c434987164db329f69317c606c3a0b8fa2b343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JC007307$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JC007307$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Rossby, T.</creatorcontrib><creatorcontrib>Flagg, C.</creatorcontrib><creatorcontrib>Ortner, P.</creatorcontrib><creatorcontrib>Hu, C.</creatorcontrib><title>A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>A 38 kHz vessel‐mounted acoustic Doppler current profiler is used to explore in detail the dynamics of an anticyclonic and a cyclonic eddy during two transits of the cruise vessel Explorer of the Seas from the Caribbean to New Jersey in July 2007. The radial scale of the two eddies is similar, but whereas the cyclone is strongly surface intensified, the anticyclone has its maximum expression with near–solid body rotation between 200 and 800 m depth. The anticyclone has a minimum in relative vorticity very close to −f at 800 m depth and the cyclone has a maximum of about +1.6 f close to the surface where f is the local Coriolis parameter. By integrating the momentum equation the geopotential anomaly field and hence the potential energy of the eddies can be determined quite accurately, which means that the kinetic and potential energy of the eddies can be determined purely through acoustic remote sensing. Given a density profile just outside the eddy one can integrate the gradient wind equation to obtain an estimate of the density and hence potential vorticity fields through the two eddies. The acoustic backscatter patterns in the eddies are quite distinct from the surrounding waters. The backscatter intensity of the main scattering layer at ∼600 m depth decreases by ∼10 dB in the core of both eddies. In the cyclonic eddy three identifiable scattering layers in the main thermocline show a strong tendency for the scattering layer to track the shoaling density structure toward the center of the eddy.
Key Points
Power of acoustic remote sensing of currents and biomass
Quantitative assessment of eddy vorticity and energetics
Highly structured biomass patterns in eddies</description><subject>acoustic remote sensing</subject><subject>ADCP</subject><subject>Biological oceanography</subject><subject>Chemical oceanography</subject><subject>Cyclones</subject><subject>Eddies</subject><subject>Geophysics</subject><subject>Marine</subject><subject>mesoscale dynamics</subject><subject>Momentum equation</subject><subject>Oceanography</subject><subject>Physical oceanography</subject><subject>Potential energy</subject><subject>Remote sensing</subject><subject>Scientific apparatus & instruments</subject><subject>ships of opportunity</subject><subject>Thermocline</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90E1LAzEQBuAgChb15g8Injy4OpPPjTdptSqiIn4cQ3abbVe3G022VP-9KxURD85lDvO8wzCE7CIcIjBzxADxcgigOeg1MmAoVcYYsHUyABR5BozpTbKT0jP0JaQSgANye0I713gaKtotA_WTSe3TMR3VbtqGVLdTWoaZj77tvme0m8WwmM6oK8MidXVJo5-HztPk2y-_TTYq1yS_8923yMPZ6f3wPLu6GV8MT64yJ3huMo2F8YoXTirJQYqcSym1kMaoUnBhco1KTArOTKUMR10qUCV3UOSVYwUXfIvsr_a-xvC28Kmz8zqVvmlc6_vDLBo0RjIUvKd7f-hzWMS2v84aAUbnTECPDlaojCGl6Cv7Guu5ix8WwX492P5-cM_5ii_rxn_8a-3l-G6IjKHpU9kqVafOv_-kXHyxSnMt7dP12LKRvmaPo3uL_BMBCIe7</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Rossby, T.</creator><creator>Flagg, C.</creator><creator>Ortner, P.</creator><creator>Hu, C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201112</creationdate><title>A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing</title><author>Rossby, T. ; Flagg, C. ; Ortner, P. ; Hu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4389-71b9e63ba565305483555745996c434987164db329f69317c606c3a0b8fa2b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>acoustic remote sensing</topic><topic>ADCP</topic><topic>Biological oceanography</topic><topic>Chemical oceanography</topic><topic>Cyclones</topic><topic>Eddies</topic><topic>Geophysics</topic><topic>Marine</topic><topic>mesoscale dynamics</topic><topic>Momentum equation</topic><topic>Oceanography</topic><topic>Physical oceanography</topic><topic>Potential energy</topic><topic>Remote sensing</topic><topic>Scientific apparatus & instruments</topic><topic>ships of opportunity</topic><topic>Thermocline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossby, T.</creatorcontrib><creatorcontrib>Flagg, C.</creatorcontrib><creatorcontrib>Ortner, P.</creatorcontrib><creatorcontrib>Hu, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossby, T.</au><au>Flagg, C.</au><au>Ortner, P.</au><au>Hu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-12</date><risdate>2011</risdate><volume>116</volume><issue>C12</issue><epage>n/a</epage><artnum>C12017</artnum><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>A 38 kHz vessel‐mounted acoustic Doppler current profiler is used to explore in detail the dynamics of an anticyclonic and a cyclonic eddy during two transits of the cruise vessel Explorer of the Seas from the Caribbean to New Jersey in July 2007. The radial scale of the two eddies is similar, but whereas the cyclone is strongly surface intensified, the anticyclone has its maximum expression with near–solid body rotation between 200 and 800 m depth. The anticyclone has a minimum in relative vorticity very close to −f at 800 m depth and the cyclone has a maximum of about +1.6 f close to the surface where f is the local Coriolis parameter. By integrating the momentum equation the geopotential anomaly field and hence the potential energy of the eddies can be determined quite accurately, which means that the kinetic and potential energy of the eddies can be determined purely through acoustic remote sensing. Given a density profile just outside the eddy one can integrate the gradient wind equation to obtain an estimate of the density and hence potential vorticity fields through the two eddies. The acoustic backscatter patterns in the eddies are quite distinct from the surrounding waters. The backscatter intensity of the main scattering layer at ∼600 m depth decreases by ∼10 dB in the core of both eddies. In the cyclonic eddy three identifiable scattering layers in the main thermocline show a strong tendency for the scattering layer to track the shoaling density structure toward the center of the eddy.
Key Points
Power of acoustic remote sensing of currents and biomass
Quantitative assessment of eddy vorticity and energetics
Highly structured biomass patterns in eddies</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JC007307</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2011-12, Vol.116 (C12), p.n/a, Article C12017 |
issn | 0148-0227 2169-9275 2156-2202 2169-9291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919952143 |
source | Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection |
subjects | acoustic remote sensing ADCP Biological oceanography Chemical oceanography Cyclones Eddies Geophysics Marine mesoscale dynamics Momentum equation Oceanography Physical oceanography Potential energy Remote sensing Scientific apparatus & instruments ships of opportunity Thermocline |
title | A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tale%20of%20two%20eddies:%20Diagnosing%20coherent%20eddies%20through%20acoustic%20remote%20sensing&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Rossby,%20T.&rft.date=2011-12&rft.volume=116&rft.issue=C12&rft.epage=n/a&rft.artnum=C12017&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JC007307&rft_dat=%3Cproquest_cross%3E2618998941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=940978240&rft_id=info:pmid/&rfr_iscdi=true |