In-Situ X‑ray Tomography Study of Cement Exposed to CO2 Saturated Brine

For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2 satura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2017-08, Vol.51 (16), p.9344-9351
Hauptverfasser: Chavez Panduro, E. A, Torsæter, M, Gawel, K, Bjørge, R, Gibaud, A, Yang, Y, Bruns, S, Zheng, Y, Sørensen, H. O, Breiby, D. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9351
container_issue 16
container_start_page 9344
container_title Environmental science & technology
container_volume 51
creator Chavez Panduro, E. A
Torsæter, M
Gawel, K
Bjørge, R
Gibaud, A
Yang, Y
Bruns, S
Zheng, Y
Sørensen, H. O
Breiby, D. W
description For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2 saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2. For the first time, the growth kinetics of CaCO3 under more realistic well conditions have thus been estimated quantitatively. Combining the μ-CT observations with scanning electron microscopy resulted in a detailed understanding of the processes involved in the carbonation of cement.
doi_str_mv 10.1021/acs.est.6b06534
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1918847837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1918847837</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-117c0962cc27eefeb88be8cd44896740da73cea48a5600062a4fe57d89900edf3</originalsourceid><addsrcrecordid>eNpdkMtKA0EQRRtRMEbXbhvcCDKx34-lDlEDgSwSIbuhM1OjCcl0nO4Bs_MX_EW_xA7JQlwVXE4Vtw5C15QMKGH03pVhACEO1IIoycUJ6lHJSCaNpKeoRwjlmeVqfo4uQlgRQhgnpodGoyabLmOH5z9f363b4Znf-LfWbd93eBq7aod9jXPYQBPx8HPrA1Q4epxPGJ662LUupuCxXTZwic5qtw5wdZx99Po0nOUv2XjyPMofxpljksWMUl0Sq1hZMg1Qw8KYBZiyEsJYpQWpnOYlOGGcVKmlYk7UIHVlrCUEqpr30e3h7rb1H136uNgsQwnrtWvAd6GglhojtOE6oTf_0JXv2ia1SxRXUkgrbaLuDlQy-AcgxV5rsQ_3m0et_BffD2tz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936545959</pqid></control><display><type>article</type><title>In-Situ X‑ray Tomography Study of Cement Exposed to CO2 Saturated Brine</title><source>American Chemical Society Journals</source><creator>Chavez Panduro, E. A ; Torsæter, M ; Gawel, K ; Bjørge, R ; Gibaud, A ; Yang, Y ; Bruns, S ; Zheng, Y ; Sørensen, H. O ; Breiby, D. W</creator><creatorcontrib>Chavez Panduro, E. A ; Torsæter, M ; Gawel, K ; Bjørge, R ; Gibaud, A ; Yang, Y ; Bruns, S ; Zheng, Y ; Sørensen, H. O ; Breiby, D. W</creatorcontrib><description>For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2 saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2. For the first time, the growth kinetics of CaCO3 under more realistic well conditions have thus been estimated quantitatively. Combining the μ-CT observations with scanning electron microscopy resulted in a detailed understanding of the processes involved in the carbonation of cement.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.6b06534</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Brine ; Calcium carbonate ; Carbon dioxide ; Carbon sequestration ; Carbonation ; Cement ; Computed tomography ; Electron microscopy ; Fractures ; Growth kinetics ; High pressure ; High temperature ; In situ leaching ; Kinetics ; Leaching ; Leakage ; Portland cement ; Portland cements ; Pressure ; Reservoirs ; Saline water ; Scanning electron microscopy ; Temperature requirements ; Tomography ; Underground storage</subject><ispartof>Environmental science &amp; technology, 2017-08, Vol.51 (16), p.9344-9351</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8270-3006 ; 0000-0002-7777-6427 ; 0000-0003-3732-356X ; 0000-0002-7004-547X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.6b06534$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.6b06534$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,27085,27933,27934,56747,56797</link.rule.ids></links><search><creatorcontrib>Chavez Panduro, E. A</creatorcontrib><creatorcontrib>Torsæter, M</creatorcontrib><creatorcontrib>Gawel, K</creatorcontrib><creatorcontrib>Bjørge, R</creatorcontrib><creatorcontrib>Gibaud, A</creatorcontrib><creatorcontrib>Yang, Y</creatorcontrib><creatorcontrib>Bruns, S</creatorcontrib><creatorcontrib>Zheng, Y</creatorcontrib><creatorcontrib>Sørensen, H. O</creatorcontrib><creatorcontrib>Breiby, D. W</creatorcontrib><title>In-Situ X‑ray Tomography Study of Cement Exposed to CO2 Saturated Brine</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2 saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2. For the first time, the growth kinetics of CaCO3 under more realistic well conditions have thus been estimated quantitatively. Combining the μ-CT observations with scanning electron microscopy resulted in a detailed understanding of the processes involved in the carbonation of cement.</description><subject>Brine</subject><subject>Calcium carbonate</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbonation</subject><subject>Cement</subject><subject>Computed tomography</subject><subject>Electron microscopy</subject><subject>Fractures</subject><subject>Growth kinetics</subject><subject>High pressure</subject><subject>High temperature</subject><subject>In situ leaching</subject><subject>Kinetics</subject><subject>Leaching</subject><subject>Leakage</subject><subject>Portland cement</subject><subject>Portland cements</subject><subject>Pressure</subject><subject>Reservoirs</subject><subject>Saline water</subject><subject>Scanning electron microscopy</subject><subject>Temperature requirements</subject><subject>Tomography</subject><subject>Underground storage</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKA0EQRRtRMEbXbhvcCDKx34-lDlEDgSwSIbuhM1OjCcl0nO4Bs_MX_EW_xA7JQlwVXE4Vtw5C15QMKGH03pVhACEO1IIoycUJ6lHJSCaNpKeoRwjlmeVqfo4uQlgRQhgnpodGoyabLmOH5z9f363b4Znf-LfWbd93eBq7aod9jXPYQBPx8HPrA1Q4epxPGJ662LUupuCxXTZwic5qtw5wdZx99Po0nOUv2XjyPMofxpljksWMUl0Sq1hZMg1Qw8KYBZiyEsJYpQWpnOYlOGGcVKmlYk7UIHVlrCUEqpr30e3h7rb1H136uNgsQwnrtWvAd6GglhojtOE6oTf_0JXv2ia1SxRXUkgrbaLuDlQy-AcgxV5rsQ_3m0et_BffD2tz</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Chavez Panduro, E. A</creator><creator>Torsæter, M</creator><creator>Gawel, K</creator><creator>Bjørge, R</creator><creator>Gibaud, A</creator><creator>Yang, Y</creator><creator>Bruns, S</creator><creator>Zheng, Y</creator><creator>Sørensen, H. O</creator><creator>Breiby, D. W</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8270-3006</orcidid><orcidid>https://orcid.org/0000-0002-7777-6427</orcidid><orcidid>https://orcid.org/0000-0003-3732-356X</orcidid><orcidid>https://orcid.org/0000-0002-7004-547X</orcidid></search><sort><creationdate>20170815</creationdate><title>In-Situ X‑ray Tomography Study of Cement Exposed to CO2 Saturated Brine</title><author>Chavez Panduro, E. A ; Torsæter, M ; Gawel, K ; Bjørge, R ; Gibaud, A ; Yang, Y ; Bruns, S ; Zheng, Y ; Sørensen, H. O ; Breiby, D. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-117c0962cc27eefeb88be8cd44896740da73cea48a5600062a4fe57d89900edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brine</topic><topic>Calcium carbonate</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbonation</topic><topic>Cement</topic><topic>Computed tomography</topic><topic>Electron microscopy</topic><topic>Fractures</topic><topic>Growth kinetics</topic><topic>High pressure</topic><topic>High temperature</topic><topic>In situ leaching</topic><topic>Kinetics</topic><topic>Leaching</topic><topic>Leakage</topic><topic>Portland cement</topic><topic>Portland cements</topic><topic>Pressure</topic><topic>Reservoirs</topic><topic>Saline water</topic><topic>Scanning electron microscopy</topic><topic>Temperature requirements</topic><topic>Tomography</topic><topic>Underground storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavez Panduro, E. A</creatorcontrib><creatorcontrib>Torsæter, M</creatorcontrib><creatorcontrib>Gawel, K</creatorcontrib><creatorcontrib>Bjørge, R</creatorcontrib><creatorcontrib>Gibaud, A</creatorcontrib><creatorcontrib>Yang, Y</creatorcontrib><creatorcontrib>Bruns, S</creatorcontrib><creatorcontrib>Zheng, Y</creatorcontrib><creatorcontrib>Sørensen, H. O</creatorcontrib><creatorcontrib>Breiby, D. W</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez Panduro, E. A</au><au>Torsæter, M</au><au>Gawel, K</au><au>Bjørge, R</au><au>Gibaud, A</au><au>Yang, Y</au><au>Bruns, S</au><au>Zheng, Y</au><au>Sørensen, H. O</au><au>Breiby, D. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ X‑ray Tomography Study of Cement Exposed to CO2 Saturated Brine</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-08-15</date><risdate>2017</risdate><volume>51</volume><issue>16</issue><spage>9344</spage><epage>9351</epage><pages>9344-9351</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2 saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2. For the first time, the growth kinetics of CaCO3 under more realistic well conditions have thus been estimated quantitatively. Combining the μ-CT observations with scanning electron microscopy resulted in a detailed understanding of the processes involved in the carbonation of cement.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.6b06534</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8270-3006</orcidid><orcidid>https://orcid.org/0000-0002-7777-6427</orcidid><orcidid>https://orcid.org/0000-0003-3732-356X</orcidid><orcidid>https://orcid.org/0000-0002-7004-547X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2017-08, Vol.51 (16), p.9344-9351
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1918847837
source American Chemical Society Journals
subjects Brine
Calcium carbonate
Carbon dioxide
Carbon sequestration
Carbonation
Cement
Computed tomography
Electron microscopy
Fractures
Growth kinetics
High pressure
High temperature
In situ leaching
Kinetics
Leaching
Leakage
Portland cement
Portland cements
Pressure
Reservoirs
Saline water
Scanning electron microscopy
Temperature requirements
Tomography
Underground storage
title In-Situ X‑ray Tomography Study of Cement Exposed to CO2 Saturated Brine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T17%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20X%E2%80%91ray%20Tomography%20Study%20of%20Cement%20Exposed%20to%20CO2%20Saturated%20Brine&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Chavez%20Panduro,%20E.%20A&rft.date=2017-08-15&rft.volume=51&rft.issue=16&rft.spage=9344&rft.epage=9351&rft.pages=9344-9351&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.6b06534&rft_dat=%3Cproquest_acs_j%3E1918847837%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936545959&rft_id=info:pmid/&rfr_iscdi=true