Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles

An analytical investigation into compressible gas flow with slight rarefactions through the insect trachea and tracheoles during the closed spiracle phase is undertaken, and a complete set of asymptotic analytical solutions is presented. We first obtain estimates of the Reynolds and Mach numbers at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biotheoretica 2017-09, Vol.65 (3), p.211-231
Hauptverfasser: Simelane, S. M., Abelman, S., Duncan, F. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 3
container_start_page 211
container_title Acta biotheoretica
container_volume 65
creator Simelane, S. M.
Abelman, S.
Duncan, F. D.
description An analytical investigation into compressible gas flow with slight rarefactions through the insect trachea and tracheoles during the closed spiracle phase is undertaken, and a complete set of asymptotic analytical solutions is presented. We first obtain estimates of the Reynolds and Mach numbers at the channel terminal ends where the tracheoles directly deliver respiratory gases to the cells, by comparing the magnitude of the different forces in the compressible gas flow. The 2D Navier–Stokes equations with a slip boundary condition are used to investigate compressibility and rarefied effects in the trachea and tracheoles. Expressions for the velocity components, pressure gradients and net flow inside the trachea are then presented. Numerical simulations of the tracheal compressible flow are performed to validate the analytical results from this study. This work extends previous work of Arkilic et al. (J Microelectromech Syst 6(2):167–178, 1997 ) on compressible flows through a microchannel. Novel devices for microfluidic compressible flow transport may be invented from results obtained in this study.
doi_str_mv 10.1007/s10441-017-9312-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917963013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917963013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-f62f4451828681608e4cc57bbf7bd38f6c9037dae85e2ac34ccf7414be84e9093</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk5_gBcpePFSzZekTXIcw82B4sF5Dmn21XV07WxaxH9vSqeI4CkJ35P3e3kIuQR6C5TKOw9UCIgpyFhzYLE-ImNIJIsVT9QxGVNKIU64YCNy5v02PHUq6SkZMZXqRAAdk-lT4ZraO1titLAe685HL2Wxj-Zl_REVVdRuMFpWHl0brRrrNmgjW60P97pEf05Oclt6vDicE_I6v1_NHuLH58VyNn2MHWeijfOU5UIkoMJuBSlVKJxLZJblMltzladOUy7XFlWCzDoeprkUIDJUAjXVfEJuhtx9U7936FuzK7zDsrRV39qABqlTToEH9PoPuq27pgrtAsUSLUGmaaBgoHoBvsHc7JtiZ5tPA9T0fs3g1wS_pvdr-hJXh-Qu2-H658e30ACwAfBhVL1h82v1v6lf-F-DPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925971766</pqid></control><display><type>article</type><title>Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Simelane, S. M. ; Abelman, S. ; Duncan, F. D.</creator><creatorcontrib>Simelane, S. M. ; Abelman, S. ; Duncan, F. D.</creatorcontrib><description>An analytical investigation into compressible gas flow with slight rarefactions through the insect trachea and tracheoles during the closed spiracle phase is undertaken, and a complete set of asymptotic analytical solutions is presented. We first obtain estimates of the Reynolds and Mach numbers at the channel terminal ends where the tracheoles directly deliver respiratory gases to the cells, by comparing the magnitude of the different forces in the compressible gas flow. The 2D Navier–Stokes equations with a slip boundary condition are used to investigate compressibility and rarefied effects in the trachea and tracheoles. Expressions for the velocity components, pressure gradients and net flow inside the trachea are then presented. Numerical simulations of the tracheal compressible flow are performed to validate the analytical results from this study. This work extends previous work of Arkilic et al. (J Microelectromech Syst 6(2):167–178, 1997 ) on compressible flows through a microchannel. Novel devices for microfluidic compressible flow transport may be invented from results obtained in this study.</description><identifier>ISSN: 0001-5342</identifier><identifier>EISSN: 1572-8358</identifier><identifier>DOI: 10.1007/s10441-017-9312-9</identifier><identifier>PMID: 28695410</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animals ; Boundary layer ; Compressibility ; Compressible flow ; Computational fluid dynamics ; Computer simulation ; Education ; Evolutionary Biology ; Formulas (mathematics) ; Gas flow ; Gases ; Insecta ; Insects ; Kinetics ; Mathematical models ; Microfluidic Analytical Techniques ; Microfluidics ; Models, Theoretical ; Philosophy ; Philosophy of Biology ; Pressure gradients ; Regular Article ; Respiration ; Stokes law (fluid mechanics) ; Trachea ; Two dimensional flow ; Velocity</subject><ispartof>Acta biotheoretica, 2017-09, Vol.65 (3), p.211-231</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Acta Biotheoretica is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-f62f4451828681608e4cc57bbf7bd38f6c9037dae85e2ac34ccf7414be84e9093</cites><orcidid>0000-0001-8528-1101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10441-017-9312-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10441-017-9312-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28695410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simelane, S. M.</creatorcontrib><creatorcontrib>Abelman, S.</creatorcontrib><creatorcontrib>Duncan, F. D.</creatorcontrib><title>Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles</title><title>Acta biotheoretica</title><addtitle>Acta Biotheor</addtitle><addtitle>Acta Biotheor</addtitle><description>An analytical investigation into compressible gas flow with slight rarefactions through the insect trachea and tracheoles during the closed spiracle phase is undertaken, and a complete set of asymptotic analytical solutions is presented. We first obtain estimates of the Reynolds and Mach numbers at the channel terminal ends where the tracheoles directly deliver respiratory gases to the cells, by comparing the magnitude of the different forces in the compressible gas flow. The 2D Navier–Stokes equations with a slip boundary condition are used to investigate compressibility and rarefied effects in the trachea and tracheoles. Expressions for the velocity components, pressure gradients and net flow inside the trachea are then presented. Numerical simulations of the tracheal compressible flow are performed to validate the analytical results from this study. This work extends previous work of Arkilic et al. (J Microelectromech Syst 6(2):167–178, 1997 ) on compressible flows through a microchannel. Novel devices for microfluidic compressible flow transport may be invented from results obtained in this study.</description><subject>Animals</subject><subject>Boundary layer</subject><subject>Compressibility</subject><subject>Compressible flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Education</subject><subject>Evolutionary Biology</subject><subject>Formulas (mathematics)</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Insecta</subject><subject>Insects</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Models, Theoretical</subject><subject>Philosophy</subject><subject>Philosophy of Biology</subject><subject>Pressure gradients</subject><subject>Regular Article</subject><subject>Respiration</subject><subject>Stokes law (fluid mechanics)</subject><subject>Trachea</subject><subject>Two dimensional flow</subject><subject>Velocity</subject><issn>0001-5342</issn><issn>1572-8358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kEFLwzAYhoMobk5_gBcpePFSzZekTXIcw82B4sF5Dmn21XV07WxaxH9vSqeI4CkJ35P3e3kIuQR6C5TKOw9UCIgpyFhzYLE-ImNIJIsVT9QxGVNKIU64YCNy5v02PHUq6SkZMZXqRAAdk-lT4ZraO1titLAe685HL2Wxj-Zl_REVVdRuMFpWHl0brRrrNmgjW60P97pEf05Oclt6vDicE_I6v1_NHuLH58VyNn2MHWeijfOU5UIkoMJuBSlVKJxLZJblMltzladOUy7XFlWCzDoeprkUIDJUAjXVfEJuhtx9U7936FuzK7zDsrRV39qABqlTToEH9PoPuq27pgrtAsUSLUGmaaBgoHoBvsHc7JtiZ5tPA9T0fs3g1wS_pvdr-hJXh-Qu2-H658e30ACwAfBhVL1h82v1v6lf-F-DPA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Simelane, S. M.</creator><creator>Abelman, S.</creator><creator>Duncan, F. D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8528-1101</orcidid></search><sort><creationdate>20170901</creationdate><title>Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles</title><author>Simelane, S. M. ; Abelman, S. ; Duncan, F. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-f62f4451828681608e4cc57bbf7bd38f6c9037dae85e2ac34ccf7414be84e9093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Boundary layer</topic><topic>Compressibility</topic><topic>Compressible flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Education</topic><topic>Evolutionary Biology</topic><topic>Formulas (mathematics)</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Insecta</topic><topic>Insects</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Models, Theoretical</topic><topic>Philosophy</topic><topic>Philosophy of Biology</topic><topic>Pressure gradients</topic><topic>Regular Article</topic><topic>Respiration</topic><topic>Stokes law (fluid mechanics)</topic><topic>Trachea</topic><topic>Two dimensional flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simelane, S. M.</creatorcontrib><creatorcontrib>Abelman, S.</creatorcontrib><creatorcontrib>Duncan, F. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biotheoretica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simelane, S. M.</au><au>Abelman, S.</au><au>Duncan, F. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles</atitle><jtitle>Acta biotheoretica</jtitle><stitle>Acta Biotheor</stitle><addtitle>Acta Biotheor</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>65</volume><issue>3</issue><spage>211</spage><epage>231</epage><pages>211-231</pages><issn>0001-5342</issn><eissn>1572-8358</eissn><abstract>An analytical investigation into compressible gas flow with slight rarefactions through the insect trachea and tracheoles during the closed spiracle phase is undertaken, and a complete set of asymptotic analytical solutions is presented. We first obtain estimates of the Reynolds and Mach numbers at the channel terminal ends where the tracheoles directly deliver respiratory gases to the cells, by comparing the magnitude of the different forces in the compressible gas flow. The 2D Navier–Stokes equations with a slip boundary condition are used to investigate compressibility and rarefied effects in the trachea and tracheoles. Expressions for the velocity components, pressure gradients and net flow inside the trachea are then presented. Numerical simulations of the tracheal compressible flow are performed to validate the analytical results from this study. This work extends previous work of Arkilic et al. (J Microelectromech Syst 6(2):167–178, 1997 ) on compressible flows through a microchannel. Novel devices for microfluidic compressible flow transport may be invented from results obtained in this study.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>28695410</pmid><doi>10.1007/s10441-017-9312-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8528-1101</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5342
ispartof Acta biotheoretica, 2017-09, Vol.65 (3), p.211-231
issn 0001-5342
1572-8358
language eng
recordid cdi_proquest_miscellaneous_1917963013
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Boundary layer
Compressibility
Compressible flow
Computational fluid dynamics
Computer simulation
Education
Evolutionary Biology
Formulas (mathematics)
Gas flow
Gases
Insecta
Insects
Kinetics
Mathematical models
Microfluidic Analytical Techniques
Microfluidics
Models, Theoretical
Philosophy
Philosophy of Biology
Pressure gradients
Regular Article
Respiration
Stokes law (fluid mechanics)
Trachea
Two dimensional flow
Velocity
title Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscale%20Gaseous%20Slip%20Flow%20in%20the%20Insect%20Trachea%20and%20Tracheoles&rft.jtitle=Acta%20biotheoretica&rft.au=Simelane,%20S.%20M.&rft.date=2017-09-01&rft.volume=65&rft.issue=3&rft.spage=211&rft.epage=231&rft.pages=211-231&rft.issn=0001-5342&rft.eissn=1572-8358&rft_id=info:doi/10.1007/s10441-017-9312-9&rft_dat=%3Cproquest_cross%3E1917963013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925971766&rft_id=info:pmid/28695410&rfr_iscdi=true