Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana
Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of...
Gespeichert in:
Veröffentlicht in: | Seminars in cell & developmental biology 2018-08, Vol.80, p.106-112 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 106 |
container_title | Seminars in cell & developmental biology |
container_volume | 80 |
creator | Krüger, Falco Schumacher, Karin |
description | Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape. |
doi_str_mv | 10.1016/j.semcdb.2017.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917961516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1084952116304001</els_id><sourcerecordid>1917961516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9f68c0e43091582fc444e58cbb064ad48a37b5078bb1fad2b5bc3cc6d6405aed3</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhhdRbK2-gUguvUmdTTabzY1Q6hEKeqHXyx4m7ZaczCYF38BrH9EnMSXqpTAwM_D_8zMfIecU5hQov9rOPZbG6nkENJ3DUCAOyJRCxsOYx-xwPwsWZklEJ-TE-y0AsCzix2QSCZ4xSuMpuXnuy8ZV66Bvgm6Dwa4u-hKDr4_PYKdMXxcYaFevsULvfOCqYNEq7Wzd7NduowqnKnVKjnJVeDz76TPyenf7snwIV0_3j8vFKjSMxl2Y5VwYQBZDRhMR5YYxhokwWgNnyjKh4lQnkAqtaa5spBNtYmO45QwShTaekcvxbtPWbz36TpbOGywKVWHde0kzmmacJpQPUjZKTVt732Ium9aVqn2XFOSen9zKkZ_c85MwFIjBdvGT0OsS7Z_pF9gguB4FOPy5c9hKbxxWBq1r0XTS1u7_hG9I3oPq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917961516</pqid></control><display><type>article</type><title>Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Krüger, Falco ; Schumacher, Karin</creator><creatorcontrib>Krüger, Falco ; Schumacher, Karin</creatorcontrib><description>Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.</description><identifier>ISSN: 1084-9521</identifier><identifier>EISSN: 1096-3634</identifier><identifier>DOI: 10.1016/j.semcdb.2017.07.008</identifier><identifier>PMID: 28694113</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Membrane fusion ; Membrane Fusion - physiology ; Membrane Proteins - metabolism ; Plants ; Protein Transport - physiology ; Tonoplast ; Turgor ; Vacuolar trafficking ; Vacuole biogenesis ; Vacuoles - metabolism</subject><ispartof>Seminars in cell & developmental biology, 2018-08, Vol.80, p.106-112</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9f68c0e43091582fc444e58cbb064ad48a37b5078bb1fad2b5bc3cc6d6405aed3</citedby><cites>FETCH-LOGICAL-c413t-9f68c0e43091582fc444e58cbb064ad48a37b5078bb1fad2b5bc3cc6d6405aed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1084952116304001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28694113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krüger, Falco</creatorcontrib><creatorcontrib>Schumacher, Karin</creatorcontrib><title>Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana</title><title>Seminars in cell & developmental biology</title><addtitle>Semin Cell Dev Biol</addtitle><description>Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.</description><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Membrane fusion</subject><subject>Membrane Fusion - physiology</subject><subject>Membrane Proteins - metabolism</subject><subject>Plants</subject><subject>Protein Transport - physiology</subject><subject>Tonoplast</subject><subject>Turgor</subject><subject>Vacuolar trafficking</subject><subject>Vacuole biogenesis</subject><subject>Vacuoles - metabolism</subject><issn>1084-9521</issn><issn>1096-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNtKw0AQhhdRbK2-gUguvUmdTTabzY1Q6hEKeqHXyx4m7ZaczCYF38BrH9EnMSXqpTAwM_D_8zMfIecU5hQov9rOPZbG6nkENJ3DUCAOyJRCxsOYx-xwPwsWZklEJ-TE-y0AsCzix2QSCZ4xSuMpuXnuy8ZV66Bvgm6Dwa4u-hKDr4_PYKdMXxcYaFevsULvfOCqYNEq7Wzd7NduowqnKnVKjnJVeDz76TPyenf7snwIV0_3j8vFKjSMxl2Y5VwYQBZDRhMR5YYxhokwWgNnyjKh4lQnkAqtaa5spBNtYmO45QwShTaekcvxbtPWbz36TpbOGywKVWHde0kzmmacJpQPUjZKTVt732Ium9aVqn2XFOSen9zKkZ_c85MwFIjBdvGT0OsS7Z_pF9gguB4FOPy5c9hKbxxWBq1r0XTS1u7_hG9I3oPq</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Krüger, Falco</creator><creator>Schumacher, Karin</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201808</creationdate><title>Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana</title><author>Krüger, Falco ; Schumacher, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9f68c0e43091582fc444e58cbb064ad48a37b5078bb1fad2b5bc3cc6d6405aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Membrane fusion</topic><topic>Membrane Fusion - physiology</topic><topic>Membrane Proteins - metabolism</topic><topic>Plants</topic><topic>Protein Transport - physiology</topic><topic>Tonoplast</topic><topic>Turgor</topic><topic>Vacuolar trafficking</topic><topic>Vacuole biogenesis</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krüger, Falco</creatorcontrib><creatorcontrib>Schumacher, Karin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Seminars in cell & developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krüger, Falco</au><au>Schumacher, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana</atitle><jtitle>Seminars in cell & developmental biology</jtitle><addtitle>Semin Cell Dev Biol</addtitle><date>2018-08</date><risdate>2018</risdate><volume>80</volume><spage>106</spage><epage>112</epage><pages>106-112</pages><issn>1084-9521</issn><eissn>1096-3634</eissn><abstract>Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28694113</pmid><doi>10.1016/j.semcdb.2017.07.008</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-9521 |
ispartof | Seminars in cell & developmental biology, 2018-08, Vol.80, p.106-112 |
issn | 1084-9521 1096-3634 |
language | eng |
recordid | cdi_proquest_miscellaneous_1917961516 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Arabidopsis - metabolism Arabidopsis Proteins - metabolism Membrane fusion Membrane Fusion - physiology Membrane Proteins - metabolism Plants Protein Transport - physiology Tonoplast Turgor Vacuolar trafficking Vacuole biogenesis Vacuoles - metabolism |
title | Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pumping%20up%20the%20volume%20%E2%88%92%20vacuole%20biogenesis%20in%20Arabidopsis%20thaliana&rft.jtitle=Seminars%20in%20cell%20&%20developmental%20biology&rft.au=Kr%C3%BCger,%20Falco&rft.date=2018-08&rft.volume=80&rft.spage=106&rft.epage=112&rft.pages=106-112&rft.issn=1084-9521&rft.eissn=1096-3634&rft_id=info:doi/10.1016/j.semcdb.2017.07.008&rft_dat=%3Cproquest_cross%3E1917961516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917961516&rft_id=info:pmid/28694113&rft_els_id=S1084952116304001&rfr_iscdi=true |