Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana

Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in cell & developmental biology 2018-08, Vol.80, p.106-112
Hauptverfasser: Krüger, Falco, Schumacher, Karin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue
container_start_page 106
container_title Seminars in cell & developmental biology
container_volume 80
creator Krüger, Falco
Schumacher, Karin
description Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.
doi_str_mv 10.1016/j.semcdb.2017.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917961516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1084952116304001</els_id><sourcerecordid>1917961516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9f68c0e43091582fc444e58cbb064ad48a37b5078bb1fad2b5bc3cc6d6405aed3</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhhdRbK2-gUguvUmdTTabzY1Q6hEKeqHXyx4m7ZaczCYF38BrH9EnMSXqpTAwM_D_8zMfIecU5hQov9rOPZbG6nkENJ3DUCAOyJRCxsOYx-xwPwsWZklEJ-TE-y0AsCzix2QSCZ4xSuMpuXnuy8ZV66Bvgm6Dwa4u-hKDr4_PYKdMXxcYaFevsULvfOCqYNEq7Wzd7NduowqnKnVKjnJVeDz76TPyenf7snwIV0_3j8vFKjSMxl2Y5VwYQBZDRhMR5YYxhokwWgNnyjKh4lQnkAqtaa5spBNtYmO45QwShTaekcvxbtPWbz36TpbOGywKVWHde0kzmmacJpQPUjZKTVt732Ium9aVqn2XFOSen9zKkZ_c85MwFIjBdvGT0OsS7Z_pF9gguB4FOPy5c9hKbxxWBq1r0XTS1u7_hG9I3oPq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917961516</pqid></control><display><type>article</type><title>Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Krüger, Falco ; Schumacher, Karin</creator><creatorcontrib>Krüger, Falco ; Schumacher, Karin</creatorcontrib><description>Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.</description><identifier>ISSN: 1084-9521</identifier><identifier>EISSN: 1096-3634</identifier><identifier>DOI: 10.1016/j.semcdb.2017.07.008</identifier><identifier>PMID: 28694113</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Membrane fusion ; Membrane Fusion - physiology ; Membrane Proteins - metabolism ; Plants ; Protein Transport - physiology ; Tonoplast ; Turgor ; Vacuolar trafficking ; Vacuole biogenesis ; Vacuoles - metabolism</subject><ispartof>Seminars in cell &amp; developmental biology, 2018-08, Vol.80, p.106-112</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9f68c0e43091582fc444e58cbb064ad48a37b5078bb1fad2b5bc3cc6d6405aed3</citedby><cites>FETCH-LOGICAL-c413t-9f68c0e43091582fc444e58cbb064ad48a37b5078bb1fad2b5bc3cc6d6405aed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1084952116304001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28694113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krüger, Falco</creatorcontrib><creatorcontrib>Schumacher, Karin</creatorcontrib><title>Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana</title><title>Seminars in cell &amp; developmental biology</title><addtitle>Semin Cell Dev Biol</addtitle><description>Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.</description><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Membrane fusion</subject><subject>Membrane Fusion - physiology</subject><subject>Membrane Proteins - metabolism</subject><subject>Plants</subject><subject>Protein Transport - physiology</subject><subject>Tonoplast</subject><subject>Turgor</subject><subject>Vacuolar trafficking</subject><subject>Vacuole biogenesis</subject><subject>Vacuoles - metabolism</subject><issn>1084-9521</issn><issn>1096-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNtKw0AQhhdRbK2-gUguvUmdTTabzY1Q6hEKeqHXyx4m7ZaczCYF38BrH9EnMSXqpTAwM_D_8zMfIecU5hQov9rOPZbG6nkENJ3DUCAOyJRCxsOYx-xwPwsWZklEJ-TE-y0AsCzix2QSCZ4xSuMpuXnuy8ZV66Bvgm6Dwa4u-hKDr4_PYKdMXxcYaFevsULvfOCqYNEq7Wzd7NduowqnKnVKjnJVeDz76TPyenf7snwIV0_3j8vFKjSMxl2Y5VwYQBZDRhMR5YYxhokwWgNnyjKh4lQnkAqtaa5spBNtYmO45QwShTaekcvxbtPWbz36TpbOGywKVWHde0kzmmacJpQPUjZKTVt732Ium9aVqn2XFOSen9zKkZ_c85MwFIjBdvGT0OsS7Z_pF9gguB4FOPy5c9hKbxxWBq1r0XTS1u7_hG9I3oPq</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Krüger, Falco</creator><creator>Schumacher, Karin</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201808</creationdate><title>Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana</title><author>Krüger, Falco ; Schumacher, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9f68c0e43091582fc444e58cbb064ad48a37b5078bb1fad2b5bc3cc6d6405aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Membrane fusion</topic><topic>Membrane Fusion - physiology</topic><topic>Membrane Proteins - metabolism</topic><topic>Plants</topic><topic>Protein Transport - physiology</topic><topic>Tonoplast</topic><topic>Turgor</topic><topic>Vacuolar trafficking</topic><topic>Vacuole biogenesis</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krüger, Falco</creatorcontrib><creatorcontrib>Schumacher, Karin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Seminars in cell &amp; developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krüger, Falco</au><au>Schumacher, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana</atitle><jtitle>Seminars in cell &amp; developmental biology</jtitle><addtitle>Semin Cell Dev Biol</addtitle><date>2018-08</date><risdate>2018</risdate><volume>80</volume><spage>106</spage><epage>112</epage><pages>106-112</pages><issn>1084-9521</issn><eissn>1096-3634</eissn><abstract>Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28694113</pmid><doi>10.1016/j.semcdb.2017.07.008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-9521
ispartof Seminars in cell & developmental biology, 2018-08, Vol.80, p.106-112
issn 1084-9521
1096-3634
language eng
recordid cdi_proquest_miscellaneous_1917961516
source MEDLINE; Elsevier ScienceDirect Journals
subjects Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Membrane fusion
Membrane Fusion - physiology
Membrane Proteins - metabolism
Plants
Protein Transport - physiology
Tonoplast
Turgor
Vacuolar trafficking
Vacuole biogenesis
Vacuoles - metabolism
title Pumping up the volume − vacuole biogenesis in Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pumping%20up%20the%20volume%20%E2%88%92%20vacuole%20biogenesis%20in%20Arabidopsis%20thaliana&rft.jtitle=Seminars%20in%20cell%20&%20developmental%20biology&rft.au=Kr%C3%BCger,%20Falco&rft.date=2018-08&rft.volume=80&rft.spage=106&rft.epage=112&rft.pages=106-112&rft.issn=1084-9521&rft.eissn=1096-3634&rft_id=info:doi/10.1016/j.semcdb.2017.07.008&rft_dat=%3Cproquest_cross%3E1917961516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917961516&rft_id=info:pmid/28694113&rft_els_id=S1084952116304001&rfr_iscdi=true