Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline
Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of b...
Gespeichert in:
Veröffentlicht in: | Journal of thermal biology 2017-08, Vol.68 (Pt A), p.14-20 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | Pt A |
container_start_page | 14 |
container_title | Journal of thermal biology |
container_volume | 68 |
creator | Gaitán-Espitia, Juan Diego Bacigalupe, Leonardo D. Opitz, Tania Lagos, Nelson A. Osores, Sebastián Lardies, Marco A. |
description | Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms.
•Thermal adaptation in P. violaceus does not involve latitudinal compensations on physiological traits.•Rising ocean temperatures reduce Heart Rate but not Metabolic Rate in high latitude crabs.•Temperature is not conditioning one of the main components (MR) of the energy budget of P. violaceus.•Homeostasis/canalization in HR and MR may reflect some sort of buffering mechanism in most of the populations.•Different conclusions regarding geographic differentiation in energy metabolism can be obtained from HR and MR. |
doi_str_mv | 10.1016/j.jtherbio.2017.02.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917667793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306456516302583</els_id><sourcerecordid>1960498515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e2349fc9e9d48f9b8109c12b1104b0517195e84862a511930a338a10741fd1c33</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EosvCV6giceGSMBMnjn0DVeWPVIkLnC3HdlpH3jjYDmK_PY625cCFi0fy-82b0TxCrhEaBGTv52bODzaOLjQt4NBA2wDiM3JAPogahGifkwNQYHXXs_6KvEppBsCe9vCSXLWccTEgO5Bw-3v1IbrlvlofzskFH-6dVr5avUrZaZfPlVpM5cP-uY88laqMWrPKLiyVW4pe3mxjdqZoOqqxUj4UR1X5AuXNuGUXvFvsa_JiUj7ZN4_1SH58uv1-86W--_b5683Hu1pTwXJtW9qJSQsrTMcnMXIEobEdEaEboccBRW95x1mrekRBQVHKFcLQ4WRQU3ok7y6-aww_N5uyPLmkrfdqsWFLEgUOjA2D2NG3_6Bz2GLZeKcYdIL35W5Hwi6UjiGlaCe5RndS8SwR5B6JnOVTJHKPREIrSySl8frRfhtP1vxte8qgAB8ugC33-OVslEk7u2hrXLQ6SxPc_2b8Ac-poG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960498515</pqid></control><display><type>article</type><title>Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gaitán-Espitia, Juan Diego ; Bacigalupe, Leonardo D. ; Opitz, Tania ; Lagos, Nelson A. ; Osores, Sebastián ; Lardies, Marco A.</creator><creatorcontrib>Gaitán-Espitia, Juan Diego ; Bacigalupe, Leonardo D. ; Opitz, Tania ; Lagos, Nelson A. ; Osores, Sebastián ; Lardies, Marco A.</creatorcontrib><description>Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms.
•Thermal adaptation in P. violaceus does not involve latitudinal compensations on physiological traits.•Rising ocean temperatures reduce Heart Rate but not Metabolic Rate in high latitude crabs.•Temperature is not conditioning one of the main components (MR) of the energy budget of P. violaceus.•Homeostasis/canalization in HR and MR may reflect some sort of buffering mechanism in most of the populations.•Different conclusions regarding geographic differentiation in energy metabolism can be obtained from HR and MR.</description><identifier>ISSN: 0306-4565</identifier><identifier>EISSN: 1879-0992</identifier><identifier>DOI: 10.1016/j.jtherbio.2017.02.011</identifier><identifier>PMID: 28689716</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptation, Physiological - physiology ; Animal Distribution ; Animals ; Brachyura - physiology ; Climate Change ; Climate effects ; Crustaceans ; Energy metabolism ; Energy Metabolism - physiology ; Environment ; Environmental stress ; Genotype x environment ; Geographic variation ; Heart beat ; Heart diseases ; Heart rate ; Homeostasis ; Metabolic rate ; Metabolism ; Ocean temperature ; Physiological flexibility ; Plasticity ; Reaction norm ; Studies ; Temperature ; Thermo-tolerance</subject><ispartof>Journal of thermal biology, 2017-08, Vol.68 (Pt A), p.14-20</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e2349fc9e9d48f9b8109c12b1104b0517195e84862a511930a338a10741fd1c33</citedby><cites>FETCH-LOGICAL-c396t-e2349fc9e9d48f9b8109c12b1104b0517195e84862a511930a338a10741fd1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtherbio.2017.02.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28689716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaitán-Espitia, Juan Diego</creatorcontrib><creatorcontrib>Bacigalupe, Leonardo D.</creatorcontrib><creatorcontrib>Opitz, Tania</creatorcontrib><creatorcontrib>Lagos, Nelson A.</creatorcontrib><creatorcontrib>Osores, Sebastián</creatorcontrib><creatorcontrib>Lardies, Marco A.</creatorcontrib><title>Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline</title><title>Journal of thermal biology</title><addtitle>J Therm Biol</addtitle><description>Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms.
•Thermal adaptation in P. violaceus does not involve latitudinal compensations on physiological traits.•Rising ocean temperatures reduce Heart Rate but not Metabolic Rate in high latitude crabs.•Temperature is not conditioning one of the main components (MR) of the energy budget of P. violaceus.•Homeostasis/canalization in HR and MR may reflect some sort of buffering mechanism in most of the populations.•Different conclusions regarding geographic differentiation in energy metabolism can be obtained from HR and MR.</description><subject>Adaptation, Physiological - physiology</subject><subject>Animal Distribution</subject><subject>Animals</subject><subject>Brachyura - physiology</subject><subject>Climate Change</subject><subject>Climate effects</subject><subject>Crustaceans</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Environment</subject><subject>Environmental stress</subject><subject>Genotype x environment</subject><subject>Geographic variation</subject><subject>Heart beat</subject><subject>Heart diseases</subject><subject>Heart rate</subject><subject>Homeostasis</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Ocean temperature</subject><subject>Physiological flexibility</subject><subject>Plasticity</subject><subject>Reaction norm</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thermo-tolerance</subject><issn>0306-4565</issn><issn>1879-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EosvCV6giceGSMBMnjn0DVeWPVIkLnC3HdlpH3jjYDmK_PY625cCFi0fy-82b0TxCrhEaBGTv52bODzaOLjQt4NBA2wDiM3JAPogahGifkwNQYHXXs_6KvEppBsCe9vCSXLWccTEgO5Bw-3v1IbrlvlofzskFH-6dVr5avUrZaZfPlVpM5cP-uY88laqMWrPKLiyVW4pe3mxjdqZoOqqxUj4UR1X5AuXNuGUXvFvsa_JiUj7ZN4_1SH58uv1-86W--_b5683Hu1pTwXJtW9qJSQsrTMcnMXIEobEdEaEboccBRW95x1mrekRBQVHKFcLQ4WRQU3ok7y6-aww_N5uyPLmkrfdqsWFLEgUOjA2D2NG3_6Bz2GLZeKcYdIL35W5Hwi6UjiGlaCe5RndS8SwR5B6JnOVTJHKPREIrSySl8frRfhtP1vxte8qgAB8ugC33-OVslEk7u2hrXLQ6SxPc_2b8Ac-poG8</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Gaitán-Espitia, Juan Diego</creator><creator>Bacigalupe, Leonardo D.</creator><creator>Opitz, Tania</creator><creator>Lagos, Nelson A.</creator><creator>Osores, Sebastián</creator><creator>Lardies, Marco A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline</title><author>Gaitán-Espitia, Juan Diego ; Bacigalupe, Leonardo D. ; Opitz, Tania ; Lagos, Nelson A. ; Osores, Sebastián ; Lardies, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e2349fc9e9d48f9b8109c12b1104b0517195e84862a511930a338a10741fd1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animal Distribution</topic><topic>Animals</topic><topic>Brachyura - physiology</topic><topic>Climate Change</topic><topic>Climate effects</topic><topic>Crustaceans</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Environment</topic><topic>Environmental stress</topic><topic>Genotype x environment</topic><topic>Geographic variation</topic><topic>Heart beat</topic><topic>Heart diseases</topic><topic>Heart rate</topic><topic>Homeostasis</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Ocean temperature</topic><topic>Physiological flexibility</topic><topic>Plasticity</topic><topic>Reaction norm</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thermo-tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaitán-Espitia, Juan Diego</creatorcontrib><creatorcontrib>Bacigalupe, Leonardo D.</creatorcontrib><creatorcontrib>Opitz, Tania</creatorcontrib><creatorcontrib>Lagos, Nelson A.</creatorcontrib><creatorcontrib>Osores, Sebastián</creatorcontrib><creatorcontrib>Lardies, Marco A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of thermal biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaitán-Espitia, Juan Diego</au><au>Bacigalupe, Leonardo D.</au><au>Opitz, Tania</au><au>Lagos, Nelson A.</au><au>Osores, Sebastián</au><au>Lardies, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline</atitle><jtitle>Journal of thermal biology</jtitle><addtitle>J Therm Biol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>68</volume><issue>Pt A</issue><spage>14</spage><epage>20</epage><pages>14-20</pages><issn>0306-4565</issn><eissn>1879-0992</eissn><abstract>Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms.
•Thermal adaptation in P. violaceus does not involve latitudinal compensations on physiological traits.•Rising ocean temperatures reduce Heart Rate but not Metabolic Rate in high latitude crabs.•Temperature is not conditioning one of the main components (MR) of the energy budget of P. violaceus.•Homeostasis/canalization in HR and MR may reflect some sort of buffering mechanism in most of the populations.•Different conclusions regarding geographic differentiation in energy metabolism can be obtained from HR and MR.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28689716</pmid><doi>10.1016/j.jtherbio.2017.02.011</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4565 |
ispartof | Journal of thermal biology, 2017-08, Vol.68 (Pt A), p.14-20 |
issn | 0306-4565 1879-0992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1917667793 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adaptation, Physiological - physiology Animal Distribution Animals Brachyura - physiology Climate Change Climate effects Crustaceans Energy metabolism Energy Metabolism - physiology Environment Environmental stress Genotype x environment Geographic variation Heart beat Heart diseases Heart rate Homeostasis Metabolic rate Metabolism Ocean temperature Physiological flexibility Plasticity Reaction norm Studies Temperature Thermo-tolerance |
title | Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20physiological%20plasticity%20and%20local%20thermal%20adaptation%20in%20an%20intertidal%20crab%20along%20a%20latitudinal%20cline&rft.jtitle=Journal%20of%20thermal%20biology&rft.au=Gait%C3%A1n-Espitia,%20Juan%20Diego&rft.date=2017-08&rft.volume=68&rft.issue=Pt%20A&rft.spage=14&rft.epage=20&rft.pages=14-20&rft.issn=0306-4565&rft.eissn=1879-0992&rft_id=info:doi/10.1016/j.jtherbio.2017.02.011&rft_dat=%3Cproquest_cross%3E1960498515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1960498515&rft_id=info:pmid/28689716&rft_els_id=S0306456516302583&rfr_iscdi=true |