Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline

Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal biology 2017-08, Vol.68 (Pt A), p.14-20
Hauptverfasser: Gaitán-Espitia, Juan Diego, Bacigalupe, Leonardo D., Opitz, Tania, Lagos, Nelson A., Osores, Sebastián, Lardies, Marco A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue Pt A
container_start_page 14
container_title Journal of thermal biology
container_volume 68
creator Gaitán-Espitia, Juan Diego
Bacigalupe, Leonardo D.
Opitz, Tania
Lagos, Nelson A.
Osores, Sebastián
Lardies, Marco A.
description Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. •Thermal adaptation in P. violaceus does not involve latitudinal compensations on physiological traits.•Rising ocean temperatures reduce Heart Rate but not Metabolic Rate in high latitude crabs.•Temperature is not conditioning one of the main components (MR) of the energy budget of P. violaceus.•Homeostasis/canalization in HR and MR may reflect some sort of buffering mechanism in most of the populations.•Different conclusions regarding geographic differentiation in energy metabolism can be obtained from HR and MR.
doi_str_mv 10.1016/j.jtherbio.2017.02.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917667793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306456516302583</els_id><sourcerecordid>1960498515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e2349fc9e9d48f9b8109c12b1104b0517195e84862a511930a338a10741fd1c33</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EosvCV6giceGSMBMnjn0DVeWPVIkLnC3HdlpH3jjYDmK_PY625cCFi0fy-82b0TxCrhEaBGTv52bODzaOLjQt4NBA2wDiM3JAPogahGifkwNQYHXXs_6KvEppBsCe9vCSXLWccTEgO5Bw-3v1IbrlvlofzskFH-6dVr5avUrZaZfPlVpM5cP-uY88laqMWrPKLiyVW4pe3mxjdqZoOqqxUj4UR1X5AuXNuGUXvFvsa_JiUj7ZN4_1SH58uv1-86W--_b5683Hu1pTwXJtW9qJSQsrTMcnMXIEobEdEaEboccBRW95x1mrekRBQVHKFcLQ4WRQU3ok7y6-aww_N5uyPLmkrfdqsWFLEgUOjA2D2NG3_6Bz2GLZeKcYdIL35W5Hwi6UjiGlaCe5RndS8SwR5B6JnOVTJHKPREIrSySl8frRfhtP1vxte8qgAB8ugC33-OVslEk7u2hrXLQ6SxPc_2b8Ac-poG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960498515</pqid></control><display><type>article</type><title>Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gaitán-Espitia, Juan Diego ; Bacigalupe, Leonardo D. ; Opitz, Tania ; Lagos, Nelson A. ; Osores, Sebastián ; Lardies, Marco A.</creator><creatorcontrib>Gaitán-Espitia, Juan Diego ; Bacigalupe, Leonardo D. ; Opitz, Tania ; Lagos, Nelson A. ; Osores, Sebastián ; Lardies, Marco A.</creatorcontrib><description>Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. •Thermal adaptation in P. violaceus does not involve latitudinal compensations on physiological traits.•Rising ocean temperatures reduce Heart Rate but not Metabolic Rate in high latitude crabs.•Temperature is not conditioning one of the main components (MR) of the energy budget of P. violaceus.•Homeostasis/canalization in HR and MR may reflect some sort of buffering mechanism in most of the populations.•Different conclusions regarding geographic differentiation in energy metabolism can be obtained from HR and MR.</description><identifier>ISSN: 0306-4565</identifier><identifier>EISSN: 1879-0992</identifier><identifier>DOI: 10.1016/j.jtherbio.2017.02.011</identifier><identifier>PMID: 28689716</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptation, Physiological - physiology ; Animal Distribution ; Animals ; Brachyura - physiology ; Climate Change ; Climate effects ; Crustaceans ; Energy metabolism ; Energy Metabolism - physiology ; Environment ; Environmental stress ; Genotype x environment ; Geographic variation ; Heart beat ; Heart diseases ; Heart rate ; Homeostasis ; Metabolic rate ; Metabolism ; Ocean temperature ; Physiological flexibility ; Plasticity ; Reaction norm ; Studies ; Temperature ; Thermo-tolerance</subject><ispartof>Journal of thermal biology, 2017-08, Vol.68 (Pt A), p.14-20</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e2349fc9e9d48f9b8109c12b1104b0517195e84862a511930a338a10741fd1c33</citedby><cites>FETCH-LOGICAL-c396t-e2349fc9e9d48f9b8109c12b1104b0517195e84862a511930a338a10741fd1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtherbio.2017.02.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28689716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaitán-Espitia, Juan Diego</creatorcontrib><creatorcontrib>Bacigalupe, Leonardo D.</creatorcontrib><creatorcontrib>Opitz, Tania</creatorcontrib><creatorcontrib>Lagos, Nelson A.</creatorcontrib><creatorcontrib>Osores, Sebastián</creatorcontrib><creatorcontrib>Lardies, Marco A.</creatorcontrib><title>Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline</title><title>Journal of thermal biology</title><addtitle>J Therm Biol</addtitle><description>Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. •Thermal adaptation in P. violaceus does not involve latitudinal compensations on physiological traits.•Rising ocean temperatures reduce Heart Rate but not Metabolic Rate in high latitude crabs.•Temperature is not conditioning one of the main components (MR) of the energy budget of P. violaceus.•Homeostasis/canalization in HR and MR may reflect some sort of buffering mechanism in most of the populations.•Different conclusions regarding geographic differentiation in energy metabolism can be obtained from HR and MR.</description><subject>Adaptation, Physiological - physiology</subject><subject>Animal Distribution</subject><subject>Animals</subject><subject>Brachyura - physiology</subject><subject>Climate Change</subject><subject>Climate effects</subject><subject>Crustaceans</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Environment</subject><subject>Environmental stress</subject><subject>Genotype x environment</subject><subject>Geographic variation</subject><subject>Heart beat</subject><subject>Heart diseases</subject><subject>Heart rate</subject><subject>Homeostasis</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Ocean temperature</subject><subject>Physiological flexibility</subject><subject>Plasticity</subject><subject>Reaction norm</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thermo-tolerance</subject><issn>0306-4565</issn><issn>1879-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EosvCV6giceGSMBMnjn0DVeWPVIkLnC3HdlpH3jjYDmK_PY625cCFi0fy-82b0TxCrhEaBGTv52bODzaOLjQt4NBA2wDiM3JAPogahGifkwNQYHXXs_6KvEppBsCe9vCSXLWccTEgO5Bw-3v1IbrlvlofzskFH-6dVr5avUrZaZfPlVpM5cP-uY88laqMWrPKLiyVW4pe3mxjdqZoOqqxUj4UR1X5AuXNuGUXvFvsa_JiUj7ZN4_1SH58uv1-86W--_b5683Hu1pTwXJtW9qJSQsrTMcnMXIEobEdEaEboccBRW95x1mrekRBQVHKFcLQ4WRQU3ok7y6-aww_N5uyPLmkrfdqsWFLEgUOjA2D2NG3_6Bz2GLZeKcYdIL35W5Hwi6UjiGlaCe5RndS8SwR5B6JnOVTJHKPREIrSySl8frRfhtP1vxte8qgAB8ugC33-OVslEk7u2hrXLQ6SxPc_2b8Ac-poG8</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Gaitán-Espitia, Juan Diego</creator><creator>Bacigalupe, Leonardo D.</creator><creator>Opitz, Tania</creator><creator>Lagos, Nelson A.</creator><creator>Osores, Sebastián</creator><creator>Lardies, Marco A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline</title><author>Gaitán-Espitia, Juan Diego ; Bacigalupe, Leonardo D. ; Opitz, Tania ; Lagos, Nelson A. ; Osores, Sebastián ; Lardies, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e2349fc9e9d48f9b8109c12b1104b0517195e84862a511930a338a10741fd1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animal Distribution</topic><topic>Animals</topic><topic>Brachyura - physiology</topic><topic>Climate Change</topic><topic>Climate effects</topic><topic>Crustaceans</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Environment</topic><topic>Environmental stress</topic><topic>Genotype x environment</topic><topic>Geographic variation</topic><topic>Heart beat</topic><topic>Heart diseases</topic><topic>Heart rate</topic><topic>Homeostasis</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Ocean temperature</topic><topic>Physiological flexibility</topic><topic>Plasticity</topic><topic>Reaction norm</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thermo-tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaitán-Espitia, Juan Diego</creatorcontrib><creatorcontrib>Bacigalupe, Leonardo D.</creatorcontrib><creatorcontrib>Opitz, Tania</creatorcontrib><creatorcontrib>Lagos, Nelson A.</creatorcontrib><creatorcontrib>Osores, Sebastián</creatorcontrib><creatorcontrib>Lardies, Marco A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of thermal biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaitán-Espitia, Juan Diego</au><au>Bacigalupe, Leonardo D.</au><au>Opitz, Tania</au><au>Lagos, Nelson A.</au><au>Osores, Sebastián</au><au>Lardies, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline</atitle><jtitle>Journal of thermal biology</jtitle><addtitle>J Therm Biol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>68</volume><issue>Pt A</issue><spage>14</spage><epage>20</epage><pages>14-20</pages><issn>0306-4565</issn><eissn>1879-0992</eissn><abstract>Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. •Thermal adaptation in P. violaceus does not involve latitudinal compensations on physiological traits.•Rising ocean temperatures reduce Heart Rate but not Metabolic Rate in high latitude crabs.•Temperature is not conditioning one of the main components (MR) of the energy budget of P. violaceus.•Homeostasis/canalization in HR and MR may reflect some sort of buffering mechanism in most of the populations.•Different conclusions regarding geographic differentiation in energy metabolism can be obtained from HR and MR.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28689716</pmid><doi>10.1016/j.jtherbio.2017.02.011</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4565
ispartof Journal of thermal biology, 2017-08, Vol.68 (Pt A), p.14-20
issn 0306-4565
1879-0992
language eng
recordid cdi_proquest_miscellaneous_1917667793
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adaptation, Physiological - physiology
Animal Distribution
Animals
Brachyura - physiology
Climate Change
Climate effects
Crustaceans
Energy metabolism
Energy Metabolism - physiology
Environment
Environmental stress
Genotype x environment
Geographic variation
Heart beat
Heart diseases
Heart rate
Homeostasis
Metabolic rate
Metabolism
Ocean temperature
Physiological flexibility
Plasticity
Reaction norm
Studies
Temperature
Thermo-tolerance
title Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20physiological%20plasticity%20and%20local%20thermal%20adaptation%20in%20an%20intertidal%20crab%20along%20a%20latitudinal%20cline&rft.jtitle=Journal%20of%20thermal%20biology&rft.au=Gait%C3%A1n-Espitia,%20Juan%20Diego&rft.date=2017-08&rft.volume=68&rft.issue=Pt%20A&rft.spage=14&rft.epage=20&rft.pages=14-20&rft.issn=0306-4565&rft.eissn=1879-0992&rft_id=info:doi/10.1016/j.jtherbio.2017.02.011&rft_dat=%3Cproquest_cross%3E1960498515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1960498515&rft_id=info:pmid/28689716&rft_els_id=S0306456516302583&rfr_iscdi=true