Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteries
Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1H]p...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2017, Vol.19 (28), p.18612-18618 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1H]pyrimidinone (UHP) moieties, which endow the HCNFs with the ability to form quadruple hydrogen bonds (QHBs). The as-prepared HCNFs are, on average, 13 μm in length and 100 nm in diameter, with a highly graphitic structure. The oxidized HCNFs (Ox-HCNFs) obtained by Hummers' method are partially exfoliated, having double-bladed saw-like structures that extend in the direction of the graphite planes. QHBs are formed between the HCNFs after functionalization with the UHP moieties. The final surface-modified HCNFs (N-Ox-HCNFs) have more electrochemical sites, shorter Li
diffusion lengths, and additional electron pathways compared with the as-prepared HCNF and Ox-HCNF. The introduction of oxygen- and nitrogen-containing functional groups improves the performance of LIBs: a high charge capacity of 763 mA h g
at 0.1 A g
, excellent rate capability (a capacity of 402 mA h g
at 3 A g
), and near 100% capacity retention after 300 cycles are reported. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c7cp03246c |