Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus
In a rat model of hydrocephalus triggered by intraventricular hemorrhage, Kristopher Kahle and colleagues show that TLR4–NF-κB-dependent inflammatory signaling in the choroid plexus causes hypersecretion of cerebrospinal fluid that drives hydrocephalus. Targeting TLR4–NF-κB-mediated signaling or the...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2017-08, Vol.23 (8), p.997-1003 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1003 |
---|---|
container_issue | 8 |
container_start_page | 997 |
container_title | Nature medicine |
container_volume | 23 |
creator | Karimy, Jason K Zhang, Jinwei Kurland, David B Theriault, Brianna Carusillo Duran, Daniel Stokum, Jesse A Furey, Charuta Gavankar Zhou, Xu Mansuri, M Shahid Montejo, Julio Vera, Alberto DiLuna, Michael L Delpire, Eric Alper, Seth L Gunel, Murat Gerzanich, Volodymyr Medzhitov, Ruslan Simard, J Marc Kahle, Kristopher T |
description | In a rat model of hydrocephalus triggered by intraventricular hemorrhage, Kristopher Kahle and colleagues show that TLR4–NF-κB-dependent inflammatory signaling in the choroid plexus causes hypersecretion of cerebrospinal fluid that drives hydrocephalus. Targeting TLR4–NF-κB-mediated signaling or the NKCC1–SPAK complex ameliorates hydrocephalus.
The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood–CSF barrier to gate immune cell entry into the central nervous system
1
. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques
2
. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a ∼3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4–NF-κB signaling or the SPAK–NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus. |
doi_str_mv | 10.1038/nm.4361 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917667020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632585387</galeid><sourcerecordid>A632585387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-1d51d8c14704ea4fc0dfef5bfc96428ba8bdc058d7845dd39681af3dd34481083</originalsourceid><addsrcrecordid>eNqN0luL1TAQAOAiintR_AdSEFx96Jo0TZs-LouXAwsL3vAtpMnkNEua1KSBPfjnTdnV49knnzLJfAxkZoriBUbnGBH2zk3nDWnxo-IY06atcId-PM4x6ljFetoeFScx3iCECKL90-KoZm1fo5YcF782TlsxTWIx3lUKZnAK3FJKCDAEH2fjhC21TUaV426GEEEGWHE57MplhFKOPvicnS3cpljCbPKrNWkqjStnH_Nt8iGMYmtkLqGClzCPwqb4rHiihY3w_P48Lb59eP_18lN1df1xc3lxVUmK6qXCimLFJG461IBotERKg6aDln3b1GwQbFASUaY61lClSN8yLDTJUdMwjBg5Ld7c1Z2D_5kgLnwyUYK1woFPkeMed23boRpl-uoBvfEp5BZEXqO-o7TvCN6rrbDAjdN-CUKuRflFS2rKKGFdVm8PlPRugdtlK1KMfPPl8__b6--H9vU_dgRhlzF6m9ahxEN4dgdlHmQMoPkczCTCjmPE17XhbuLr2mT58v7baZhA_XV_9mTfwphTbgth35eHtX4DeOrKGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097559731</pqid></control><display><type>article</type><title>Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Karimy, Jason K ; Zhang, Jinwei ; Kurland, David B ; Theriault, Brianna Carusillo ; Duran, Daniel ; Stokum, Jesse A ; Furey, Charuta Gavankar ; Zhou, Xu ; Mansuri, M Shahid ; Montejo, Julio ; Vera, Alberto ; DiLuna, Michael L ; Delpire, Eric ; Alper, Seth L ; Gunel, Murat ; Gerzanich, Volodymyr ; Medzhitov, Ruslan ; Simard, J Marc ; Kahle, Kristopher T</creator><creatorcontrib>Karimy, Jason K ; Zhang, Jinwei ; Kurland, David B ; Theriault, Brianna Carusillo ; Duran, Daniel ; Stokum, Jesse A ; Furey, Charuta Gavankar ; Zhou, Xu ; Mansuri, M Shahid ; Montejo, Julio ; Vera, Alberto ; DiLuna, Michael L ; Delpire, Eric ; Alper, Seth L ; Gunel, Murat ; Gerzanich, Volodymyr ; Medzhitov, Ruslan ; Simard, J Marc ; Kahle, Kristopher T</creatorcontrib><description>In a rat model of hydrocephalus triggered by intraventricular hemorrhage, Kristopher Kahle and colleagues show that TLR4–NF-κB-dependent inflammatory signaling in the choroid plexus causes hypersecretion of cerebrospinal fluid that drives hydrocephalus. Targeting TLR4–NF-κB-mediated signaling or the NKCC1–SPAK complex ameliorates hydrocephalus.
The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood–CSF barrier to gate immune cell entry into the central nervous system
1
. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques
2
. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a ∼3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4–NF-κB signaling or the SPAK–NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.4361</identifier><identifier>PMID: 28692063</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1689/2609 ; 631/378/371 ; 692/308/575 ; 692/617/375/240 ; 82 ; 82/51 ; 82/80 ; Acetazolamide - pharmacology ; Animals ; Antioxidants - pharmacology ; Biomedicine ; Blotting, Western ; Brain ; Bumetanide ; Bumetanide - pharmacology ; Cancer Research ; Causes of ; Central nervous system ; Cerebral Hemorrhage - complications ; Cerebral Hemorrhage - immunology ; Cerebral Ventricles ; Cerebrospinal fluid ; Cerebrospinal Fluid - secretion ; Chloride transport ; Choroid plexus ; Choroid Plexus - drug effects ; Choroid Plexus - immunology ; Choroid Plexus - secretion ; Development and progression ; Diuretics - pharmacology ; Epithelium ; Gene Knockdown Techniques ; Gene Knockout Techniques ; Health aspects ; Hemorrhage ; Homeostasis ; Hydrocephalus ; Hydrocephalus - etiology ; Hydrocephalus - immunology ; Hydrocephalus - metabolism ; Immune system ; Immunoblotting ; Immunohistochemistry ; Immunoprecipitation ; Immunosuppressive agents ; Infectious Diseases ; Inflammation ; Inflammatory response ; letter ; Medicine ; Metabolic Diseases ; Molecular Medicine ; Neurosciences ; Neurosurgery ; NF-kappa B - immunology ; NF-κB protein ; Pathogenesis ; Physiological aspects ; Physiology ; Proline - analogs & derivatives ; Proline - pharmacology ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Rats ; Rats, Wistar ; Reabsorption ; Regulatory agencies ; Rodents ; Salicylanilides - pharmacology ; Solute Carrier Family 12, Member 2 - metabolism ; Sulfonamides - pharmacology ; Thiocarbamates - pharmacology ; TLR4 ; TLR4 protein ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - immunology ; Toll-like receptors ; Transcription factors ; Tumor necrosis factor-TNF ; Ventricles (cerebral)</subject><ispartof>Nature medicine, 2017-08, Vol.23 (8), p.997-1003</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-1d51d8c14704ea4fc0dfef5bfc96428ba8bdc058d7845dd39681af3dd34481083</citedby><cites>FETCH-LOGICAL-c502t-1d51d8c14704ea4fc0dfef5bfc96428ba8bdc058d7845dd39681af3dd34481083</cites><orcidid>0000-0002-1692-6823 ; 0000-0001-6888-252X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.4361$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.4361$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28692063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karimy, Jason K</creatorcontrib><creatorcontrib>Zhang, Jinwei</creatorcontrib><creatorcontrib>Kurland, David B</creatorcontrib><creatorcontrib>Theriault, Brianna Carusillo</creatorcontrib><creatorcontrib>Duran, Daniel</creatorcontrib><creatorcontrib>Stokum, Jesse A</creatorcontrib><creatorcontrib>Furey, Charuta Gavankar</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Mansuri, M Shahid</creatorcontrib><creatorcontrib>Montejo, Julio</creatorcontrib><creatorcontrib>Vera, Alberto</creatorcontrib><creatorcontrib>DiLuna, Michael L</creatorcontrib><creatorcontrib>Delpire, Eric</creatorcontrib><creatorcontrib>Alper, Seth L</creatorcontrib><creatorcontrib>Gunel, Murat</creatorcontrib><creatorcontrib>Gerzanich, Volodymyr</creatorcontrib><creatorcontrib>Medzhitov, Ruslan</creatorcontrib><creatorcontrib>Simard, J Marc</creatorcontrib><creatorcontrib>Kahle, Kristopher T</creatorcontrib><title>Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>In a rat model of hydrocephalus triggered by intraventricular hemorrhage, Kristopher Kahle and colleagues show that TLR4–NF-κB-dependent inflammatory signaling in the choroid plexus causes hypersecretion of cerebrospinal fluid that drives hydrocephalus. Targeting TLR4–NF-κB-mediated signaling or the NKCC1–SPAK complex ameliorates hydrocephalus.
The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood–CSF barrier to gate immune cell entry into the central nervous system
1
. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques
2
. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a ∼3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4–NF-κB signaling or the SPAK–NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus.</description><subject>631/378/1689/2609</subject><subject>631/378/371</subject><subject>692/308/575</subject><subject>692/617/375/240</subject><subject>82</subject><subject>82/51</subject><subject>82/80</subject><subject>Acetazolamide - pharmacology</subject><subject>Animals</subject><subject>Antioxidants - pharmacology</subject><subject>Biomedicine</subject><subject>Blotting, Western</subject><subject>Brain</subject><subject>Bumetanide</subject><subject>Bumetanide - pharmacology</subject><subject>Cancer Research</subject><subject>Causes of</subject><subject>Central nervous system</subject><subject>Cerebral Hemorrhage - complications</subject><subject>Cerebral Hemorrhage - immunology</subject><subject>Cerebral Ventricles</subject><subject>Cerebrospinal fluid</subject><subject>Cerebrospinal Fluid - secretion</subject><subject>Chloride transport</subject><subject>Choroid plexus</subject><subject>Choroid Plexus - drug effects</subject><subject>Choroid Plexus - immunology</subject><subject>Choroid Plexus - secretion</subject><subject>Development and progression</subject><subject>Diuretics - pharmacology</subject><subject>Epithelium</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Knockout Techniques</subject><subject>Health aspects</subject><subject>Hemorrhage</subject><subject>Homeostasis</subject><subject>Hydrocephalus</subject><subject>Hydrocephalus - etiology</subject><subject>Hydrocephalus - immunology</subject><subject>Hydrocephalus - metabolism</subject><subject>Immune system</subject><subject>Immunoblotting</subject><subject>Immunohistochemistry</subject><subject>Immunoprecipitation</subject><subject>Immunosuppressive agents</subject><subject>Infectious Diseases</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>letter</subject><subject>Medicine</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>NF-kappa B - immunology</subject><subject>NF-κB protein</subject><subject>Pathogenesis</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Proline - analogs & derivatives</subject><subject>Proline - pharmacology</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reabsorption</subject><subject>Regulatory agencies</subject><subject>Rodents</subject><subject>Salicylanilides - pharmacology</subject><subject>Solute Carrier Family 12, Member 2 - metabolism</subject><subject>Sulfonamides - pharmacology</subject><subject>Thiocarbamates - pharmacology</subject><subject>TLR4</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - immunology</subject><subject>Toll-like receptors</subject><subject>Transcription factors</subject><subject>Tumor necrosis factor-TNF</subject><subject>Ventricles (cerebral)</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0luL1TAQAOAiintR_AdSEFx96Jo0TZs-LouXAwsL3vAtpMnkNEua1KSBPfjnTdnV49knnzLJfAxkZoriBUbnGBH2zk3nDWnxo-IY06atcId-PM4x6ljFetoeFScx3iCECKL90-KoZm1fo5YcF782TlsxTWIx3lUKZnAK3FJKCDAEH2fjhC21TUaV426GEEEGWHE57MplhFKOPvicnS3cpljCbPKrNWkqjStnH_Nt8iGMYmtkLqGClzCPwqb4rHiihY3w_P48Lb59eP_18lN1df1xc3lxVUmK6qXCimLFJG461IBotERKg6aDln3b1GwQbFASUaY61lClSN8yLDTJUdMwjBg5Ld7c1Z2D_5kgLnwyUYK1woFPkeMed23boRpl-uoBvfEp5BZEXqO-o7TvCN6rrbDAjdN-CUKuRflFS2rKKGFdVm8PlPRugdtlK1KMfPPl8__b6--H9vU_dgRhlzF6m9ahxEN4dgdlHmQMoPkczCTCjmPE17XhbuLr2mT58v7baZhA_XV_9mTfwphTbgth35eHtX4DeOrKGw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Karimy, Jason K</creator><creator>Zhang, Jinwei</creator><creator>Kurland, David B</creator><creator>Theriault, Brianna Carusillo</creator><creator>Duran, Daniel</creator><creator>Stokum, Jesse A</creator><creator>Furey, Charuta Gavankar</creator><creator>Zhou, Xu</creator><creator>Mansuri, M Shahid</creator><creator>Montejo, Julio</creator><creator>Vera, Alberto</creator><creator>DiLuna, Michael L</creator><creator>Delpire, Eric</creator><creator>Alper, Seth L</creator><creator>Gunel, Murat</creator><creator>Gerzanich, Volodymyr</creator><creator>Medzhitov, Ruslan</creator><creator>Simard, J Marc</creator><creator>Kahle, Kristopher T</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1692-6823</orcidid><orcidid>https://orcid.org/0000-0001-6888-252X</orcidid></search><sort><creationdate>20170801</creationdate><title>Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus</title><author>Karimy, Jason K ; Zhang, Jinwei ; Kurland, David B ; Theriault, Brianna Carusillo ; Duran, Daniel ; Stokum, Jesse A ; Furey, Charuta Gavankar ; Zhou, Xu ; Mansuri, M Shahid ; Montejo, Julio ; Vera, Alberto ; DiLuna, Michael L ; Delpire, Eric ; Alper, Seth L ; Gunel, Murat ; Gerzanich, Volodymyr ; Medzhitov, Ruslan ; Simard, J Marc ; Kahle, Kristopher T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-1d51d8c14704ea4fc0dfef5bfc96428ba8bdc058d7845dd39681af3dd34481083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/378/1689/2609</topic><topic>631/378/371</topic><topic>692/308/575</topic><topic>692/617/375/240</topic><topic>82</topic><topic>82/51</topic><topic>82/80</topic><topic>Acetazolamide - pharmacology</topic><topic>Animals</topic><topic>Antioxidants - pharmacology</topic><topic>Biomedicine</topic><topic>Blotting, Western</topic><topic>Brain</topic><topic>Bumetanide</topic><topic>Bumetanide - pharmacology</topic><topic>Cancer Research</topic><topic>Causes of</topic><topic>Central nervous system</topic><topic>Cerebral Hemorrhage - complications</topic><topic>Cerebral Hemorrhage - immunology</topic><topic>Cerebral Ventricles</topic><topic>Cerebrospinal fluid</topic><topic>Cerebrospinal Fluid - secretion</topic><topic>Chloride transport</topic><topic>Choroid plexus</topic><topic>Choroid Plexus - drug effects</topic><topic>Choroid Plexus - immunology</topic><topic>Choroid Plexus - secretion</topic><topic>Development and progression</topic><topic>Diuretics - pharmacology</topic><topic>Epithelium</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Knockout Techniques</topic><topic>Health aspects</topic><topic>Hemorrhage</topic><topic>Homeostasis</topic><topic>Hydrocephalus</topic><topic>Hydrocephalus - etiology</topic><topic>Hydrocephalus - immunology</topic><topic>Hydrocephalus - metabolism</topic><topic>Immune system</topic><topic>Immunoblotting</topic><topic>Immunohistochemistry</topic><topic>Immunoprecipitation</topic><topic>Immunosuppressive agents</topic><topic>Infectious Diseases</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>letter</topic><topic>Medicine</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>NF-kappa B - immunology</topic><topic>NF-κB protein</topic><topic>Pathogenesis</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Proline - analogs & derivatives</topic><topic>Proline - pharmacology</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reabsorption</topic><topic>Regulatory agencies</topic><topic>Rodents</topic><topic>Salicylanilides - pharmacology</topic><topic>Solute Carrier Family 12, Member 2 - metabolism</topic><topic>Sulfonamides - pharmacology</topic><topic>Thiocarbamates - pharmacology</topic><topic>TLR4</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - immunology</topic><topic>Toll-like receptors</topic><topic>Transcription factors</topic><topic>Tumor necrosis factor-TNF</topic><topic>Ventricles (cerebral)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimy, Jason K</creatorcontrib><creatorcontrib>Zhang, Jinwei</creatorcontrib><creatorcontrib>Kurland, David B</creatorcontrib><creatorcontrib>Theriault, Brianna Carusillo</creatorcontrib><creatorcontrib>Duran, Daniel</creatorcontrib><creatorcontrib>Stokum, Jesse A</creatorcontrib><creatorcontrib>Furey, Charuta Gavankar</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Mansuri, M Shahid</creatorcontrib><creatorcontrib>Montejo, Julio</creatorcontrib><creatorcontrib>Vera, Alberto</creatorcontrib><creatorcontrib>DiLuna, Michael L</creatorcontrib><creatorcontrib>Delpire, Eric</creatorcontrib><creatorcontrib>Alper, Seth L</creatorcontrib><creatorcontrib>Gunel, Murat</creatorcontrib><creatorcontrib>Gerzanich, Volodymyr</creatorcontrib><creatorcontrib>Medzhitov, Ruslan</creatorcontrib><creatorcontrib>Simard, J Marc</creatorcontrib><creatorcontrib>Kahle, Kristopher T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimy, Jason K</au><au>Zhang, Jinwei</au><au>Kurland, David B</au><au>Theriault, Brianna Carusillo</au><au>Duran, Daniel</au><au>Stokum, Jesse A</au><au>Furey, Charuta Gavankar</au><au>Zhou, Xu</au><au>Mansuri, M Shahid</au><au>Montejo, Julio</au><au>Vera, Alberto</au><au>DiLuna, Michael L</au><au>Delpire, Eric</au><au>Alper, Seth L</au><au>Gunel, Murat</au><au>Gerzanich, Volodymyr</au><au>Medzhitov, Ruslan</au><au>Simard, J Marc</au><au>Kahle, Kristopher T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>23</volume><issue>8</issue><spage>997</spage><epage>1003</epage><pages>997-1003</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>In a rat model of hydrocephalus triggered by intraventricular hemorrhage, Kristopher Kahle and colleagues show that TLR4–NF-κB-dependent inflammatory signaling in the choroid plexus causes hypersecretion of cerebrospinal fluid that drives hydrocephalus. Targeting TLR4–NF-κB-mediated signaling or the NKCC1–SPAK complex ameliorates hydrocephalus.
The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood–CSF barrier to gate immune cell entry into the central nervous system
1
. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques
2
. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a ∼3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4–NF-κB signaling or the SPAK–NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28692063</pmid><doi>10.1038/nm.4361</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1692-6823</orcidid><orcidid>https://orcid.org/0000-0001-6888-252X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2017-08, Vol.23 (8), p.997-1003 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_1917667020 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/378/1689/2609 631/378/371 692/308/575 692/617/375/240 82 82/51 82/80 Acetazolamide - pharmacology Animals Antioxidants - pharmacology Biomedicine Blotting, Western Brain Bumetanide Bumetanide - pharmacology Cancer Research Causes of Central nervous system Cerebral Hemorrhage - complications Cerebral Hemorrhage - immunology Cerebral Ventricles Cerebrospinal fluid Cerebrospinal Fluid - secretion Chloride transport Choroid plexus Choroid Plexus - drug effects Choroid Plexus - immunology Choroid Plexus - secretion Development and progression Diuretics - pharmacology Epithelium Gene Knockdown Techniques Gene Knockout Techniques Health aspects Hemorrhage Homeostasis Hydrocephalus Hydrocephalus - etiology Hydrocephalus - immunology Hydrocephalus - metabolism Immune system Immunoblotting Immunohistochemistry Immunoprecipitation Immunosuppressive agents Infectious Diseases Inflammation Inflammatory response letter Medicine Metabolic Diseases Molecular Medicine Neurosciences Neurosurgery NF-kappa B - immunology NF-κB protein Pathogenesis Physiological aspects Physiology Proline - analogs & derivatives Proline - pharmacology Protein-Serine-Threonine Kinases - metabolism Proteins Rats Rats, Wistar Reabsorption Regulatory agencies Rodents Salicylanilides - pharmacology Solute Carrier Family 12, Member 2 - metabolism Sulfonamides - pharmacology Thiocarbamates - pharmacology TLR4 TLR4 protein Toll-Like Receptor 4 - genetics Toll-Like Receptor 4 - immunology Toll-like receptors Transcription factors Tumor necrosis factor-TNF Ventricles (cerebral) |
title | Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflammation-dependent%20cerebrospinal%20fluid%20hypersecretion%20by%20the%20choroid%20plexus%20epithelium%20in%20posthemorrhagic%20hydrocephalus&rft.jtitle=Nature%20medicine&rft.au=Karimy,%20Jason%20K&rft.date=2017-08-01&rft.volume=23&rft.issue=8&rft.spage=997&rft.epage=1003&rft.pages=997-1003&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.4361&rft_dat=%3Cgale_proqu%3EA632585387%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097559731&rft_id=info:pmid/28692063&rft_galeid=A632585387&rfr_iscdi=true |