Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells

Honokiol (HK), a natural chemical isolated from Mangnolia officinalis, has shown antitumorigenic activities when used to treat a variety of tumor cell lines. The mechanism of honokiol activity when used to treat gefitinib-sensitive and gefitinib-resistant non-small cell lung cancer (NSCLC) requires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2017-10, Vol.141, p.188-198
Hauptverfasser: Yang, Jianhong, Wu, Wenshuang, Wen, Jiaolin, Ye, Haoyu, Luo, Hong, Bai, Peng, Tang, Minghai, Wang, Fang, Zheng, Li, Yang, Shengyong, Li, Weimin, Peng, Aihua, Yang, Li, Wan, Li, Chen, Lijuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue
container_start_page 188
container_title Biomaterials
container_volume 141
creator Yang, Jianhong
Wu, Wenshuang
Wen, Jiaolin
Ye, Haoyu
Luo, Hong
Bai, Peng
Tang, Minghai
Wang, Fang
Zheng, Li
Yang, Shengyong
Li, Weimin
Peng, Aihua
Yang, Li
Wan, Li
Chen, Lijuan
description Honokiol (HK), a natural chemical isolated from Mangnolia officinalis, has shown antitumorigenic activities when used to treat a variety of tumor cell lines. The mechanism of honokiol activity when used to treat gefitinib-sensitive and gefitinib-resistant non-small cell lung cancer (NSCLC) requires elucidation. Here, the presence of liposomal honokiol (LHK) induced apoptotic and antitumor activities in four xenograft models generated using NSCLC cell lines such as HCC827 (gefitinib-sensitive) and H1975 (gefitinib-resistant). Mechanistic studies revealed that LHK inhibited the Akt and Erk1/2, both EGFR signaling cascades effectors, by promoting degradation of HSP90 client proteins (HCP), including wild-type or mutant EGFR, Akt and C-Raf. Molecular biology assays showed that LHK induced HCP degradation through a lysosomal pathway, rather than the canonical proteasome protein degradation pathway. As a result of misfolded protein accumulation, LHK induced endoplasmic reticulum (ER) stress and autophagy. Inhibition of ER stress (with 4-phenylbutyrate) or autophagy (with small interfering RNA) reduced LHK-induced HCP degradations. Additionally, LHK induced autophagy showed a protective role for cancer cell as inhibition of autophagy in vitro and in vivo by autophagosome degradation inhibitors could promote the anticancer activity of LHK. LHK has been approved by the China Food and Drug Administration for first-in-human clinical trials in NSCLC. The current study will guide the design of future LHK clinical trials.
doi_str_mv 10.1016/j.biomaterials.2017.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917665645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961217304520</els_id><sourcerecordid>1917665645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-7575e4f9452493e477754e51f0452a5ba85ba1dc886a1be4d66ab6c740a287183</originalsourceid><addsrcrecordid>eNqNUduO0zAQtRCI7S78ArJ44iXFzvoW3lC57EoVPADPlhNP2ilpHGxnpf4OX4qrlMsj0ljWjM8545lDyEvO1pxx9fqwbjEcXYaIbkjrmnG9ZiVY_YisuNGmkg2Tj8mKcVFXjeL1FblO6cBKzkT9lFzVRpmGc7kiP7c4hVTUBroPY_iOYaA4-rkDT4dTujx52EXnXcYw0tDTuzQ1jHYDwpjpFEMGHBN1o1-SLuMDUDfnMO3d7lT0aBvynu6gx4wjtlWCMeGCKqS_9QgJU3ZF9dOXzXZDOxiG9Iw86cuc8Pxy35BvH95_3dxV288f7zdvt1UnhMqVllqC6Bsha9HcgtBaSwGS96xUnGydKYf7zhjleAvCK-Va1WnBXG00N7c35NWiW4b4MUPK9ojp_AM3QpiT5Q3XSkklZIG-WaBdDClF6O0U8ejiyXJmzx7Zg_3XI3v2yLISrC7kF5c-c3sE_4f625QCeLcAoEz7gBBt6sqqiyUYy3KtD_g_fX4B69KtXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917665645</pqid></control><display><type>article</type><title>Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yang, Jianhong ; Wu, Wenshuang ; Wen, Jiaolin ; Ye, Haoyu ; Luo, Hong ; Bai, Peng ; Tang, Minghai ; Wang, Fang ; Zheng, Li ; Yang, Shengyong ; Li, Weimin ; Peng, Aihua ; Yang, Li ; Wan, Li ; Chen, Lijuan</creator><creatorcontrib>Yang, Jianhong ; Wu, Wenshuang ; Wen, Jiaolin ; Ye, Haoyu ; Luo, Hong ; Bai, Peng ; Tang, Minghai ; Wang, Fang ; Zheng, Li ; Yang, Shengyong ; Li, Weimin ; Peng, Aihua ; Yang, Li ; Wan, Li ; Chen, Lijuan</creatorcontrib><description>Honokiol (HK), a natural chemical isolated from Mangnolia officinalis, has shown antitumorigenic activities when used to treat a variety of tumor cell lines. The mechanism of honokiol activity when used to treat gefitinib-sensitive and gefitinib-resistant non-small cell lung cancer (NSCLC) requires elucidation. Here, the presence of liposomal honokiol (LHK) induced apoptotic and antitumor activities in four xenograft models generated using NSCLC cell lines such as HCC827 (gefitinib-sensitive) and H1975 (gefitinib-resistant). Mechanistic studies revealed that LHK inhibited the Akt and Erk1/2, both EGFR signaling cascades effectors, by promoting degradation of HSP90 client proteins (HCP), including wild-type or mutant EGFR, Akt and C-Raf. Molecular biology assays showed that LHK induced HCP degradation through a lysosomal pathway, rather than the canonical proteasome protein degradation pathway. As a result of misfolded protein accumulation, LHK induced endoplasmic reticulum (ER) stress and autophagy. Inhibition of ER stress (with 4-phenylbutyrate) or autophagy (with small interfering RNA) reduced LHK-induced HCP degradations. Additionally, LHK induced autophagy showed a protective role for cancer cell as inhibition of autophagy in vitro and in vivo by autophagosome degradation inhibitors could promote the anticancer activity of LHK. LHK has been approved by the China Food and Drug Administration for first-in-human clinical trials in NSCLC. The current study will guide the design of future LHK clinical trials.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2017.07.002</identifier><identifier>PMID: 28689115</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Autophagy ; Autophagy - drug effects ; Biphenyl Compounds - pharmacology ; Biphenyl Compounds - therapeutic use ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Cell Line, Tumor ; Drug Resistance, Neoplasm - drug effects ; EGFR ; Female ; Gefitinib-resistance ; Honokiol ; HSP90 ; HSP90 Heat-Shock Proteins - metabolism ; Humans ; Lignans - pharmacology ; Lignans - therapeutic use ; Lung Neoplasms - drug therapy ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Mice, Inbred BALB C ; Mice, Nude ; Quinazolines - pharmacology ; Quinazolines - therapeutic use ; Signal Transduction - drug effects</subject><ispartof>Biomaterials, 2017-10, Vol.141, p.188-198</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-7575e4f9452493e477754e51f0452a5ba85ba1dc886a1be4d66ab6c740a287183</citedby><cites>FETCH-LOGICAL-c446t-7575e4f9452493e477754e51f0452a5ba85ba1dc886a1be4d66ab6c740a287183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961217304520$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28689115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jianhong</creatorcontrib><creatorcontrib>Wu, Wenshuang</creatorcontrib><creatorcontrib>Wen, Jiaolin</creatorcontrib><creatorcontrib>Ye, Haoyu</creatorcontrib><creatorcontrib>Luo, Hong</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Tang, Minghai</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Zheng, Li</creatorcontrib><creatorcontrib>Yang, Shengyong</creatorcontrib><creatorcontrib>Li, Weimin</creatorcontrib><creatorcontrib>Peng, Aihua</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Wan, Li</creatorcontrib><creatorcontrib>Chen, Lijuan</creatorcontrib><title>Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Honokiol (HK), a natural chemical isolated from Mangnolia officinalis, has shown antitumorigenic activities when used to treat a variety of tumor cell lines. The mechanism of honokiol activity when used to treat gefitinib-sensitive and gefitinib-resistant non-small cell lung cancer (NSCLC) requires elucidation. Here, the presence of liposomal honokiol (LHK) induced apoptotic and antitumor activities in four xenograft models generated using NSCLC cell lines such as HCC827 (gefitinib-sensitive) and H1975 (gefitinib-resistant). Mechanistic studies revealed that LHK inhibited the Akt and Erk1/2, both EGFR signaling cascades effectors, by promoting degradation of HSP90 client proteins (HCP), including wild-type or mutant EGFR, Akt and C-Raf. Molecular biology assays showed that LHK induced HCP degradation through a lysosomal pathway, rather than the canonical proteasome protein degradation pathway. As a result of misfolded protein accumulation, LHK induced endoplasmic reticulum (ER) stress and autophagy. Inhibition of ER stress (with 4-phenylbutyrate) or autophagy (with small interfering RNA) reduced LHK-induced HCP degradations. Additionally, LHK induced autophagy showed a protective role for cancer cell as inhibition of autophagy in vitro and in vivo by autophagosome degradation inhibitors could promote the anticancer activity of LHK. LHK has been approved by the China Food and Drug Administration for first-in-human clinical trials in NSCLC. The current study will guide the design of future LHK clinical trials.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Biphenyl Compounds - pharmacology</subject><subject>Biphenyl Compounds - therapeutic use</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Cell Line, Tumor</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>EGFR</subject><subject>Female</subject><subject>Gefitinib-resistance</subject><subject>Honokiol</subject><subject>HSP90</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Lignans - pharmacology</subject><subject>Lignans - therapeutic use</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Quinazolines - pharmacology</subject><subject>Quinazolines - therapeutic use</subject><subject>Signal Transduction - drug effects</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUduO0zAQtRCI7S78ArJ44iXFzvoW3lC57EoVPADPlhNP2ilpHGxnpf4OX4qrlMsj0ljWjM8545lDyEvO1pxx9fqwbjEcXYaIbkjrmnG9ZiVY_YisuNGmkg2Tj8mKcVFXjeL1FblO6cBKzkT9lFzVRpmGc7kiP7c4hVTUBroPY_iOYaA4-rkDT4dTujx52EXnXcYw0tDTuzQ1jHYDwpjpFEMGHBN1o1-SLuMDUDfnMO3d7lT0aBvynu6gx4wjtlWCMeGCKqS_9QgJU3ZF9dOXzXZDOxiG9Iw86cuc8Pxy35BvH95_3dxV288f7zdvt1UnhMqVllqC6Bsha9HcgtBaSwGS96xUnGydKYf7zhjleAvCK-Va1WnBXG00N7c35NWiW4b4MUPK9ojp_AM3QpiT5Q3XSkklZIG-WaBdDClF6O0U8ejiyXJmzx7Zg_3XI3v2yLISrC7kF5c-c3sE_4f625QCeLcAoEz7gBBt6sqqiyUYy3KtD_g_fX4B69KtXg</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Yang, Jianhong</creator><creator>Wu, Wenshuang</creator><creator>Wen, Jiaolin</creator><creator>Ye, Haoyu</creator><creator>Luo, Hong</creator><creator>Bai, Peng</creator><creator>Tang, Minghai</creator><creator>Wang, Fang</creator><creator>Zheng, Li</creator><creator>Yang, Shengyong</creator><creator>Li, Weimin</creator><creator>Peng, Aihua</creator><creator>Yang, Li</creator><creator>Wan, Li</creator><creator>Chen, Lijuan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells</title><author>Yang, Jianhong ; Wu, Wenshuang ; Wen, Jiaolin ; Ye, Haoyu ; Luo, Hong ; Bai, Peng ; Tang, Minghai ; Wang, Fang ; Zheng, Li ; Yang, Shengyong ; Li, Weimin ; Peng, Aihua ; Yang, Li ; Wan, Li ; Chen, Lijuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-7575e4f9452493e477754e51f0452a5ba85ba1dc886a1be4d66ab6c740a287183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Biphenyl Compounds - pharmacology</topic><topic>Biphenyl Compounds - therapeutic use</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Cell Line, Tumor</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>EGFR</topic><topic>Female</topic><topic>Gefitinib-resistance</topic><topic>Honokiol</topic><topic>HSP90</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Lignans - pharmacology</topic><topic>Lignans - therapeutic use</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Quinazolines - pharmacology</topic><topic>Quinazolines - therapeutic use</topic><topic>Signal Transduction - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianhong</creatorcontrib><creatorcontrib>Wu, Wenshuang</creatorcontrib><creatorcontrib>Wen, Jiaolin</creatorcontrib><creatorcontrib>Ye, Haoyu</creatorcontrib><creatorcontrib>Luo, Hong</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Tang, Minghai</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Zheng, Li</creatorcontrib><creatorcontrib>Yang, Shengyong</creatorcontrib><creatorcontrib>Li, Weimin</creatorcontrib><creatorcontrib>Peng, Aihua</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Wan, Li</creatorcontrib><creatorcontrib>Chen, Lijuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianhong</au><au>Wu, Wenshuang</au><au>Wen, Jiaolin</au><au>Ye, Haoyu</au><au>Luo, Hong</au><au>Bai, Peng</au><au>Tang, Minghai</au><au>Wang, Fang</au><au>Zheng, Li</au><au>Yang, Shengyong</au><au>Li, Weimin</au><au>Peng, Aihua</au><au>Yang, Li</au><au>Wan, Li</au><au>Chen, Lijuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2017-10</date><risdate>2017</risdate><volume>141</volume><spage>188</spage><epage>198</epage><pages>188-198</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Honokiol (HK), a natural chemical isolated from Mangnolia officinalis, has shown antitumorigenic activities when used to treat a variety of tumor cell lines. The mechanism of honokiol activity when used to treat gefitinib-sensitive and gefitinib-resistant non-small cell lung cancer (NSCLC) requires elucidation. Here, the presence of liposomal honokiol (LHK) induced apoptotic and antitumor activities in four xenograft models generated using NSCLC cell lines such as HCC827 (gefitinib-sensitive) and H1975 (gefitinib-resistant). Mechanistic studies revealed that LHK inhibited the Akt and Erk1/2, both EGFR signaling cascades effectors, by promoting degradation of HSP90 client proteins (HCP), including wild-type or mutant EGFR, Akt and C-Raf. Molecular biology assays showed that LHK induced HCP degradation through a lysosomal pathway, rather than the canonical proteasome protein degradation pathway. As a result of misfolded protein accumulation, LHK induced endoplasmic reticulum (ER) stress and autophagy. Inhibition of ER stress (with 4-phenylbutyrate) or autophagy (with small interfering RNA) reduced LHK-induced HCP degradations. Additionally, LHK induced autophagy showed a protective role for cancer cell as inhibition of autophagy in vitro and in vivo by autophagosome degradation inhibitors could promote the anticancer activity of LHK. LHK has been approved by the China Food and Drug Administration for first-in-human clinical trials in NSCLC. The current study will guide the design of future LHK clinical trials.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>28689115</pmid><doi>10.1016/j.biomaterials.2017.07.002</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2017-10, Vol.141, p.188-198
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1917665645
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Autophagy
Autophagy - drug effects
Biphenyl Compounds - pharmacology
Biphenyl Compounds - therapeutic use
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Cell Line, Tumor
Drug Resistance, Neoplasm - drug effects
EGFR
Female
Gefitinib-resistance
Honokiol
HSP90
HSP90 Heat-Shock Proteins - metabolism
Humans
Lignans - pharmacology
Lignans - therapeutic use
Lung Neoplasms - drug therapy
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Mice, Inbred BALB C
Mice, Nude
Quinazolines - pharmacology
Quinazolines - therapeutic use
Signal Transduction - drug effects
title Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liposomal%20honokiol%20induced%20lysosomal%20degradation%20of%20Hsp90%20client%20proteins%20and%20protective%20autophagy%20in%20both%20gefitinib-sensitive%20and%20gefitinib-resistant%20NSCLC%20cells&rft.jtitle=Biomaterials&rft.au=Yang,%20Jianhong&rft.date=2017-10&rft.volume=141&rft.spage=188&rft.epage=198&rft.pages=188-198&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2017.07.002&rft_dat=%3Cproquest_cross%3E1917665645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917665645&rft_id=info:pmid/28689115&rft_els_id=S0142961217304520&rfr_iscdi=true