Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds
Quantum calculations are used to examine the properties of heterodimers formed by a series of tetrel-containing molecules with NH3 as universal Lewis base. TH4 was taken as a starting point, with T = C, Si, Ge, and Sn. The H atoms were replaced by various numbers of F atomsTH3F, TF3H, and TF4so as...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-07, Vol.121 (29), p.5561-5568 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5568 |
---|---|
container_issue | 29 |
container_start_page | 5561 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 121 |
creator | Scheiner, Steve |
description | Quantum calculations are used to examine the properties of heterodimers formed by a series of tetrel-containing molecules with NH3 as universal Lewis base. TH4 was taken as a starting point, with T = C, Si, Ge, and Sn. The H atoms were replaced by various numbers of F atomsTH3F, TF3H, and TF4so as to monitor the effects of adding electron-withdrawing substituents. Unsubstituted TH4 molecules form the weakest tetrel bonds, only up to about 2 kcal/mol. The bond is strengthened when the H opposite NH3 is replaced by F, rising up to the 6–9 kcal/mol range. Another means of strengthening arises when the three peripheral H atoms of TH4 are replaced by F. The effect of the latter is heavily dependent on the nature of the T atom and is particularly noticeable for larger tetrels. The two sorts of fluorination patterns are cooperative, in that their combination in TF4 yields by far the most powerful tetrel bonding agent. The tetrel bond is strengthened as the T atom moves further down the periodic table column. The strongest bond amounts to 25.5 kcal/mol for SnF4··NH3. A number of features correlate with the binding energy, but only roughly. These properties include the charge transfer, the AIM bond critical point electron density, the molecular electrostatic potential, and the stretch of the T–X covalent bond upon complex formation. |
doi_str_mv | 10.1021/acs.jpca.7b05300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917361182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917361182</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-d6bd27e8ececfb2584b651cdecb58532dcd533d8963387e1eadf772837a35c8a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6GMDKT4o3acEaoWKhUxtMyWY19oqiQusTP03-PSwsZ0d9LzvtI9CN0SPCaYkkdt_Hi7M3qcFZgzjM_QkHCKU04JP487lnnKBcsH6Mr7LcaYMDq5RAMqhaQCyyF6W-19gEaHyiSzujeVjatrE1cmc22C63yy3uiQLNqy7qE1kIQNJKvQQfsZNgdsDfGok2fXWn-NLkpde7g5zRH6mM_W09d0-f6ymD4tU82YCKkVhaUZSDBgyoJyOSkEJ8aCKbjkjFpjOWNW5oIxmQEBbcsso5JlmnEjNRuh-2PvrnNfPfigmsobqGvdguu9IjnJmCBE0ojiI2o6530Hpdp1VaO7vSJYHSSqKFEdJKqTxBi5O7X3RQP2L_BrLQIPR-An6vqujc_-3_cNIrd9_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917361182</pqid></control><display><type>article</type><title>Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds</title><source>ACS Publications</source><creator>Scheiner, Steve</creator><creatorcontrib>Scheiner, Steve</creatorcontrib><description>Quantum calculations are used to examine the properties of heterodimers formed by a series of tetrel-containing molecules with NH3 as universal Lewis base. TH4 was taken as a starting point, with T = C, Si, Ge, and Sn. The H atoms were replaced by various numbers of F atomsTH3F, TF3H, and TF4so as to monitor the effects of adding electron-withdrawing substituents. Unsubstituted TH4 molecules form the weakest tetrel bonds, only up to about 2 kcal/mol. The bond is strengthened when the H opposite NH3 is replaced by F, rising up to the 6–9 kcal/mol range. Another means of strengthening arises when the three peripheral H atoms of TH4 are replaced by F. The effect of the latter is heavily dependent on the nature of the T atom and is particularly noticeable for larger tetrels. The two sorts of fluorination patterns are cooperative, in that their combination in TF4 yields by far the most powerful tetrel bonding agent. The tetrel bond is strengthened as the T atom moves further down the periodic table column. The strongest bond amounts to 25.5 kcal/mol for SnF4··NH3. A number of features correlate with the binding energy, but only roughly. These properties include the charge transfer, the AIM bond critical point electron density, the molecular electrostatic potential, and the stretch of the T–X covalent bond upon complex formation.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.7b05300</identifier><identifier>PMID: 28682608</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-07, Vol.121 (29), p.5561-5568</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-d6bd27e8ececfb2584b651cdecb58532dcd533d8963387e1eadf772837a35c8a3</citedby><cites>FETCH-LOGICAL-a336t-d6bd27e8ececfb2584b651cdecb58532dcd533d8963387e1eadf772837a35c8a3</cites><orcidid>0000-0003-0793-0369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.7b05300$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.7b05300$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28682608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheiner, Steve</creatorcontrib><title>Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Quantum calculations are used to examine the properties of heterodimers formed by a series of tetrel-containing molecules with NH3 as universal Lewis base. TH4 was taken as a starting point, with T = C, Si, Ge, and Sn. The H atoms were replaced by various numbers of F atomsTH3F, TF3H, and TF4so as to monitor the effects of adding electron-withdrawing substituents. Unsubstituted TH4 molecules form the weakest tetrel bonds, only up to about 2 kcal/mol. The bond is strengthened when the H opposite NH3 is replaced by F, rising up to the 6–9 kcal/mol range. Another means of strengthening arises when the three peripheral H atoms of TH4 are replaced by F. The effect of the latter is heavily dependent on the nature of the T atom and is particularly noticeable for larger tetrels. The two sorts of fluorination patterns are cooperative, in that their combination in TF4 yields by far the most powerful tetrel bonding agent. The tetrel bond is strengthened as the T atom moves further down the periodic table column. The strongest bond amounts to 25.5 kcal/mol for SnF4··NH3. A number of features correlate with the binding energy, but only roughly. These properties include the charge transfer, the AIM bond critical point electron density, the molecular electrostatic potential, and the stretch of the T–X covalent bond upon complex formation.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwM6GMDKT4o3acEaoWKhUxtMyWY19oqiQusTP03-PSwsZ0d9LzvtI9CN0SPCaYkkdt_Hi7M3qcFZgzjM_QkHCKU04JP487lnnKBcsH6Mr7LcaYMDq5RAMqhaQCyyF6W-19gEaHyiSzujeVjatrE1cmc22C63yy3uiQLNqy7qE1kIQNJKvQQfsZNgdsDfGok2fXWn-NLkpde7g5zRH6mM_W09d0-f6ymD4tU82YCKkVhaUZSDBgyoJyOSkEJ8aCKbjkjFpjOWNW5oIxmQEBbcsso5JlmnEjNRuh-2PvrnNfPfigmsobqGvdguu9IjnJmCBE0ojiI2o6530Hpdp1VaO7vSJYHSSqKFEdJKqTxBi5O7X3RQP2L_BrLQIPR-An6vqujc_-3_cNIrd9_w</recordid><startdate>20170727</startdate><enddate>20170727</enddate><creator>Scheiner, Steve</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0793-0369</orcidid></search><sort><creationdate>20170727</creationdate><title>Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds</title><author>Scheiner, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-d6bd27e8ececfb2584b651cdecb58532dcd533d8963387e1eadf772837a35c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheiner, Steve</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheiner, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2017-07-27</date><risdate>2017</risdate><volume>121</volume><issue>29</issue><spage>5561</spage><epage>5568</epage><pages>5561-5568</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Quantum calculations are used to examine the properties of heterodimers formed by a series of tetrel-containing molecules with NH3 as universal Lewis base. TH4 was taken as a starting point, with T = C, Si, Ge, and Sn. The H atoms were replaced by various numbers of F atomsTH3F, TF3H, and TF4so as to monitor the effects of adding electron-withdrawing substituents. Unsubstituted TH4 molecules form the weakest tetrel bonds, only up to about 2 kcal/mol. The bond is strengthened when the H opposite NH3 is replaced by F, rising up to the 6–9 kcal/mol range. Another means of strengthening arises when the three peripheral H atoms of TH4 are replaced by F. The effect of the latter is heavily dependent on the nature of the T atom and is particularly noticeable for larger tetrels. The two sorts of fluorination patterns are cooperative, in that their combination in TF4 yields by far the most powerful tetrel bonding agent. The tetrel bond is strengthened as the T atom moves further down the periodic table column. The strongest bond amounts to 25.5 kcal/mol for SnF4··NH3. A number of features correlate with the binding energy, but only roughly. These properties include the charge transfer, the AIM bond critical point electron density, the molecular electrostatic potential, and the stretch of the T–X covalent bond upon complex formation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28682608</pmid><doi>10.1021/acs.jpca.7b05300</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0793-0369</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-07, Vol.121 (29), p.5561-5568 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1917361182 |
source | ACS Publications |
title | Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Elucidation%20of%20Factors%20That%20Influence%20the%20Strength%20of%20Tetrel%20Bonds&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Scheiner,%20Steve&rft.date=2017-07-27&rft.volume=121&rft.issue=29&rft.spage=5561&rft.epage=5568&rft.pages=5561-5568&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.7b05300&rft_dat=%3Cproquest_cross%3E1917361182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917361182&rft_id=info:pmid/28682608&rfr_iscdi=true |