Neurotoxic, Redox-competent Alzheimer's β-Amyloid Is Released from Lipid Membrane by Methionine Oxidation

The amyloid β peptide is toxic to neurons, and it is believed that this toxicity plays a central role in the progression of Alzheimer's disease. The mechanism of this toxicity is contentious. Here we report that an Aβ peptide with the sulfur atom of Met-35 oxidized to a sulfoxide (Met(O)Aβ) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-10, Vol.278 (44), p.42959-42965
Hauptverfasser: Barnham, Kevin J., Ciccotosto, Giuseppe D., Tickler, Anna K., Ali, Feda E., Smith, Danielle G., Williamson, Nicholas A., Lam, Yuen-Han, Carrington, Darryl, Tew, Deborah, Kocak, Gulcan, Volitakis, Irene, Separovic, Frances, Barrow, Colin J., Wade, John D., Masters, Colin L., Cherny, Robert A., Curtain, Cyril C., Bush, Ashley I., Cappai, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The amyloid β peptide is toxic to neurons, and it is believed that this toxicity plays a central role in the progression of Alzheimer's disease. The mechanism of this toxicity is contentious. Here we report that an Aβ peptide with the sulfur atom of Met-35 oxidized to a sulfoxide (Met(O)Aβ) is toxic to neuronal cells, and this toxicity is attenuated by the metal chelator clioquinol and completely rescued by catalase implicating the same toxicity mechanism as reduced Aβ. However, unlike the unoxidized peptide, Met(O)Aβ is unable to penetrate lipid membranes to form ion channel-like structures, and β-sheet formation is inhibited, phenomena that are central to some theories for Aβ toxicity. Our results show that, like the unoxidized peptide, Met(O)Aβ will coordinate Cu2+ and reduce the oxidation state of the metal and still produce H2O2. We hypothesize that Met(O)Aβ production contributes to the elevation of soluble Aβ seen in the brain in Alzheimer's disease.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M305494200