Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes

Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-08, Vol.17 (8), p.4588-4595
Hauptverfasser: Zhao, Zhengtuo, Luan, Lan, Wei, Xiaoling, Zhu, Hanlin, Li, Xue, Lin, Shengqing, Siegel, Jennifer J, Chitwood, Raymond A, Xie, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4595
container_issue 8
container_start_page 4588
container_title Nano letters
container_volume 17
creator Zhao, Zhengtuo
Luan, Lan
Wei, Xiaoling
Zhu, Hanlin
Li, Xue
Lin, Shengqing
Siegel, Jennifer J
Chitwood, Raymond A
Xie, Chong
description Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.
doi_str_mv 10.1021/acs.nanolett.7b00956
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1916711594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916711594</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-cff26bfad25fefaa426e89e6aaaff135c1573de0ada1031d6a3feb6452baa7ce3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJiO7GTjKhqAakUBmCNLs4ZpXLtYicD_x5X_RiZ7nR63vekh5BbRqeMcvYAKkwtWGew76dFQ2kl5BkZM5HRVFYVPz_tZT4iVyGsaWQyQS_JiJey5LTkY7JYxQo0qHrvbKeSmYO-s9_J3EJjsE2-0Id4MZi8Dqbv9GBV3zkLJlnh4ON4967BcE0uNJiAN4c5IZ-L-cfsOV2-Pb3MHpcp5JL2qdKay0ZDy4VGDZBziWWFEgC0ZplQTBRZixRaYDRjrYRMYyNzwRuAQmE2Iff73q13PwOGvt50QaExYNENoWYVkwVjosojmu9R5V0IHnW99d0G_G_NaL0zWEeD9dFgfTAYY3eHD0OzwfYUOiqLAN0Du_jaDT7KCP93_gFL0YLX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916711594</pqid></control><display><type>article</type><title>Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zhao, Zhengtuo ; Luan, Lan ; Wei, Xiaoling ; Zhu, Hanlin ; Li, Xue ; Lin, Shengqing ; Siegel, Jennifer J ; Chitwood, Raymond A ; Xie, Chong</creator><creatorcontrib>Zhao, Zhengtuo ; Luan, Lan ; Wei, Xiaoling ; Zhu, Hanlin ; Li, Xue ; Lin, Shengqing ; Siegel, Jennifer J ; Chitwood, Raymond A ; Xie, Chong</creatorcontrib><description>Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b00956</identifier><identifier>PMID: 28682082</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Brain - diagnostic imaging ; Electrochemical Techniques - instrumentation ; Electrodes ; Humans ; Infusion Pumps ; Male ; Mice, Inbred C57BL ; Nanostructures - chemistry ; Neurons - metabolism ; Optical Fibers ; Optical Imaging ; Optogenetics ; Particle Size</subject><ispartof>Nano letters, 2017-08, Vol.17 (8), p.4588-4595</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-cff26bfad25fefaa426e89e6aaaff135c1573de0ada1031d6a3feb6452baa7ce3</citedby><cites>FETCH-LOGICAL-a460t-cff26bfad25fefaa426e89e6aaaff135c1573de0ada1031d6a3feb6452baa7ce3</cites><orcidid>0000-0002-5544-2864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b00956$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b00956$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28682082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhengtuo</creatorcontrib><creatorcontrib>Luan, Lan</creatorcontrib><creatorcontrib>Wei, Xiaoling</creatorcontrib><creatorcontrib>Zhu, Hanlin</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Lin, Shengqing</creatorcontrib><creatorcontrib>Siegel, Jennifer J</creatorcontrib><creatorcontrib>Chitwood, Raymond A</creatorcontrib><creatorcontrib>Xie, Chong</creatorcontrib><title>Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.</description><subject>Animals</subject><subject>Brain - diagnostic imaging</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrodes</subject><subject>Humans</subject><subject>Infusion Pumps</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Nanostructures - chemistry</subject><subject>Neurons - metabolism</subject><subject>Optical Fibers</subject><subject>Optical Imaging</subject><subject>Optogenetics</subject><subject>Particle Size</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJiO7GTjKhqAakUBmCNLs4ZpXLtYicD_x5X_RiZ7nR63vekh5BbRqeMcvYAKkwtWGew76dFQ2kl5BkZM5HRVFYVPz_tZT4iVyGsaWQyQS_JiJey5LTkY7JYxQo0qHrvbKeSmYO-s9_J3EJjsE2-0Id4MZi8Dqbv9GBV3zkLJlnh4ON4967BcE0uNJiAN4c5IZ-L-cfsOV2-Pb3MHpcp5JL2qdKay0ZDy4VGDZBziWWFEgC0ZplQTBRZixRaYDRjrYRMYyNzwRuAQmE2Iff73q13PwOGvt50QaExYNENoWYVkwVjosojmu9R5V0IHnW99d0G_G_NaL0zWEeD9dFgfTAYY3eHD0OzwfYUOiqLAN0Du_jaDT7KCP93_gFL0YLX</recordid><startdate>20170809</startdate><enddate>20170809</enddate><creator>Zhao, Zhengtuo</creator><creator>Luan, Lan</creator><creator>Wei, Xiaoling</creator><creator>Zhu, Hanlin</creator><creator>Li, Xue</creator><creator>Lin, Shengqing</creator><creator>Siegel, Jennifer J</creator><creator>Chitwood, Raymond A</creator><creator>Xie, Chong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5544-2864</orcidid></search><sort><creationdate>20170809</creationdate><title>Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes</title><author>Zhao, Zhengtuo ; Luan, Lan ; Wei, Xiaoling ; Zhu, Hanlin ; Li, Xue ; Lin, Shengqing ; Siegel, Jennifer J ; Chitwood, Raymond A ; Xie, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-cff26bfad25fefaa426e89e6aaaff135c1573de0ada1031d6a3feb6452baa7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Brain - diagnostic imaging</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrodes</topic><topic>Humans</topic><topic>Infusion Pumps</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Nanostructures - chemistry</topic><topic>Neurons - metabolism</topic><topic>Optical Fibers</topic><topic>Optical Imaging</topic><topic>Optogenetics</topic><topic>Particle Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhengtuo</creatorcontrib><creatorcontrib>Luan, Lan</creatorcontrib><creatorcontrib>Wei, Xiaoling</creatorcontrib><creatorcontrib>Zhu, Hanlin</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Lin, Shengqing</creatorcontrib><creatorcontrib>Siegel, Jennifer J</creatorcontrib><creatorcontrib>Chitwood, Raymond A</creatorcontrib><creatorcontrib>Xie, Chong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhengtuo</au><au>Luan, Lan</au><au>Wei, Xiaoling</au><au>Zhu, Hanlin</au><au>Li, Xue</au><au>Lin, Shengqing</au><au>Siegel, Jennifer J</au><au>Chitwood, Raymond A</au><au>Xie, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-08-09</date><risdate>2017</risdate><volume>17</volume><issue>8</issue><spage>4588</spage><epage>4595</epage><pages>4588-4595</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28682082</pmid><doi>10.1021/acs.nanolett.7b00956</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5544-2864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2017-08, Vol.17 (8), p.4588-4595
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1916711594
source MEDLINE; American Chemical Society Journals
subjects Animals
Brain - diagnostic imaging
Electrochemical Techniques - instrumentation
Electrodes
Humans
Infusion Pumps
Male
Mice, Inbred C57BL
Nanostructures - chemistry
Neurons - metabolism
Optical Fibers
Optical Imaging
Optogenetics
Particle Size
title Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoelectronic%20Coating%20Enabled%20Versatile%20Multifunctional%20Neural%20Probes&rft.jtitle=Nano%20letters&rft.au=Zhao,%20Zhengtuo&rft.date=2017-08-09&rft.volume=17&rft.issue=8&rft.spage=4588&rft.epage=4595&rft.pages=4588-4595&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b00956&rft_dat=%3Cproquest_cross%3E1916711594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916711594&rft_id=info:pmid/28682082&rfr_iscdi=true