Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes
Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifu...
Gespeichert in:
Veröffentlicht in: | Nano letters 2017-08, Vol.17 (8), p.4588-4595 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4595 |
---|---|
container_issue | 8 |
container_start_page | 4588 |
container_title | Nano letters |
container_volume | 17 |
creator | Zhao, Zhengtuo Luan, Lan Wei, Xiaoling Zhu, Hanlin Li, Xue Lin, Shengqing Siegel, Jennifer J Chitwood, Raymond A Xie, Chong |
description | Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience. |
doi_str_mv | 10.1021/acs.nanolett.7b00956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1916711594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916711594</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-cff26bfad25fefaa426e89e6aaaff135c1573de0ada1031d6a3feb6452baa7ce3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJiO7GTjKhqAakUBmCNLs4ZpXLtYicD_x5X_RiZ7nR63vekh5BbRqeMcvYAKkwtWGew76dFQ2kl5BkZM5HRVFYVPz_tZT4iVyGsaWQyQS_JiJey5LTkY7JYxQo0qHrvbKeSmYO-s9_J3EJjsE2-0Id4MZi8Dqbv9GBV3zkLJlnh4ON4967BcE0uNJiAN4c5IZ-L-cfsOV2-Pb3MHpcp5JL2qdKay0ZDy4VGDZBziWWFEgC0ZplQTBRZixRaYDRjrYRMYyNzwRuAQmE2Iff73q13PwOGvt50QaExYNENoWYVkwVjosojmu9R5V0IHnW99d0G_G_NaL0zWEeD9dFgfTAYY3eHD0OzwfYUOiqLAN0Du_jaDT7KCP93_gFL0YLX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916711594</pqid></control><display><type>article</type><title>Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zhao, Zhengtuo ; Luan, Lan ; Wei, Xiaoling ; Zhu, Hanlin ; Li, Xue ; Lin, Shengqing ; Siegel, Jennifer J ; Chitwood, Raymond A ; Xie, Chong</creator><creatorcontrib>Zhao, Zhengtuo ; Luan, Lan ; Wei, Xiaoling ; Zhu, Hanlin ; Li, Xue ; Lin, Shengqing ; Siegel, Jennifer J ; Chitwood, Raymond A ; Xie, Chong</creatorcontrib><description>Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b00956</identifier><identifier>PMID: 28682082</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Brain - diagnostic imaging ; Electrochemical Techniques - instrumentation ; Electrodes ; Humans ; Infusion Pumps ; Male ; Mice, Inbred C57BL ; Nanostructures - chemistry ; Neurons - metabolism ; Optical Fibers ; Optical Imaging ; Optogenetics ; Particle Size</subject><ispartof>Nano letters, 2017-08, Vol.17 (8), p.4588-4595</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-cff26bfad25fefaa426e89e6aaaff135c1573de0ada1031d6a3feb6452baa7ce3</citedby><cites>FETCH-LOGICAL-a460t-cff26bfad25fefaa426e89e6aaaff135c1573de0ada1031d6a3feb6452baa7ce3</cites><orcidid>0000-0002-5544-2864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b00956$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b00956$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28682082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhengtuo</creatorcontrib><creatorcontrib>Luan, Lan</creatorcontrib><creatorcontrib>Wei, Xiaoling</creatorcontrib><creatorcontrib>Zhu, Hanlin</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Lin, Shengqing</creatorcontrib><creatorcontrib>Siegel, Jennifer J</creatorcontrib><creatorcontrib>Chitwood, Raymond A</creatorcontrib><creatorcontrib>Xie, Chong</creatorcontrib><title>Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.</description><subject>Animals</subject><subject>Brain - diagnostic imaging</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrodes</subject><subject>Humans</subject><subject>Infusion Pumps</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Nanostructures - chemistry</subject><subject>Neurons - metabolism</subject><subject>Optical Fibers</subject><subject>Optical Imaging</subject><subject>Optogenetics</subject><subject>Particle Size</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJiO7GTjKhqAakUBmCNLs4ZpXLtYicD_x5X_RiZ7nR63vekh5BbRqeMcvYAKkwtWGew76dFQ2kl5BkZM5HRVFYVPz_tZT4iVyGsaWQyQS_JiJey5LTkY7JYxQo0qHrvbKeSmYO-s9_J3EJjsE2-0Id4MZi8Dqbv9GBV3zkLJlnh4ON4967BcE0uNJiAN4c5IZ-L-cfsOV2-Pb3MHpcp5JL2qdKay0ZDy4VGDZBziWWFEgC0ZplQTBRZixRaYDRjrYRMYyNzwRuAQmE2Iff73q13PwOGvt50QaExYNENoWYVkwVjosojmu9R5V0IHnW99d0G_G_NaL0zWEeD9dFgfTAYY3eHD0OzwfYUOiqLAN0Du_jaDT7KCP93_gFL0YLX</recordid><startdate>20170809</startdate><enddate>20170809</enddate><creator>Zhao, Zhengtuo</creator><creator>Luan, Lan</creator><creator>Wei, Xiaoling</creator><creator>Zhu, Hanlin</creator><creator>Li, Xue</creator><creator>Lin, Shengqing</creator><creator>Siegel, Jennifer J</creator><creator>Chitwood, Raymond A</creator><creator>Xie, Chong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5544-2864</orcidid></search><sort><creationdate>20170809</creationdate><title>Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes</title><author>Zhao, Zhengtuo ; Luan, Lan ; Wei, Xiaoling ; Zhu, Hanlin ; Li, Xue ; Lin, Shengqing ; Siegel, Jennifer J ; Chitwood, Raymond A ; Xie, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-cff26bfad25fefaa426e89e6aaaff135c1573de0ada1031d6a3feb6452baa7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Brain - diagnostic imaging</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrodes</topic><topic>Humans</topic><topic>Infusion Pumps</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Nanostructures - chemistry</topic><topic>Neurons - metabolism</topic><topic>Optical Fibers</topic><topic>Optical Imaging</topic><topic>Optogenetics</topic><topic>Particle Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhengtuo</creatorcontrib><creatorcontrib>Luan, Lan</creatorcontrib><creatorcontrib>Wei, Xiaoling</creatorcontrib><creatorcontrib>Zhu, Hanlin</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Lin, Shengqing</creatorcontrib><creatorcontrib>Siegel, Jennifer J</creatorcontrib><creatorcontrib>Chitwood, Raymond A</creatorcontrib><creatorcontrib>Xie, Chong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhengtuo</au><au>Luan, Lan</au><au>Wei, Xiaoling</au><au>Zhu, Hanlin</au><au>Li, Xue</au><au>Lin, Shengqing</au><au>Siegel, Jennifer J</au><au>Chitwood, Raymond A</au><au>Xie, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-08-09</date><risdate>2017</risdate><volume>17</volume><issue>8</issue><spage>4588</spage><epage>4595</epage><pages>4588-4595</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28682082</pmid><doi>10.1021/acs.nanolett.7b00956</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5544-2864</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2017-08, Vol.17 (8), p.4588-4595 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1916711594 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Brain - diagnostic imaging Electrochemical Techniques - instrumentation Electrodes Humans Infusion Pumps Male Mice, Inbred C57BL Nanostructures - chemistry Neurons - metabolism Optical Fibers Optical Imaging Optogenetics Particle Size |
title | Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoelectronic%20Coating%20Enabled%20Versatile%20Multifunctional%20Neural%20Probes&rft.jtitle=Nano%20letters&rft.au=Zhao,%20Zhengtuo&rft.date=2017-08-09&rft.volume=17&rft.issue=8&rft.spage=4588&rft.epage=4595&rft.pages=4588-4595&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b00956&rft_dat=%3Cproquest_cross%3E1916711594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916711594&rft_id=info:pmid/28682082&rfr_iscdi=true |