Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation

It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incuba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2003-11, Vol.87 (3), p.764-772
Hauptverfasser: Munns, Shane E., Meloni, Bruno P., Knuckey, Neville W., Arthur, Peter G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 3
container_start_page 764
container_title Journal of neurochemistry
container_volume 87
creator Munns, Shane E.
Meloni, Bruno P.
Knuckey, Neville W.
Arthur, Peter G.
description It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incubation immature and mature cultures reduced cellular energy use by 80% and 45%, respectively. Reduced cellular energy use dramatically affected ATP depletion in neuronal cultures under anoxia. Intracellular ATP stores were expected to deplete within 3 min of anoxia. However, ATP was maintained at decreased but stabilized concentrations for at least 3 h. The capacity of neuronal cultures to reduce cellular energy use during anoxia correlated with their sensitivity towards simulated ischemia. Immature cultures, with the largest capacity to reduce cellular energy use, survived simulated ischemia 2.5 times longer than mature cultures. The addition of glutamate receptor antagonists to mature cultures further decreased cellular energy use during anoxia and significantly extended their survival time under simulated ischemia. This study verifies that primary cortical neuronal cultures reduce cellular energy use during energy deprivation. Additionally, we show that maturation of glutamate receptor activity increases non‐depressible energy demand in neuronal cultures.
doi_str_mv 10.1046/j.1471-4159.2003.02049.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19164562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19164562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-628886405d8950419f12db8256a2cee5d8a249fdfc59324746719fe63ab740223</originalsourceid><addsrcrecordid>eNqNkE1PGzEQQK2qVRNo_wLyhd526-9dHzigqAUqVDjA2XK8s5GjzW6w123SX4-XhHLlNKPxm_HMQwhTUlIi1Pd1SUVFC0GlLhkhvCSMCF3uPqD5_4ePaE4IYwUngs3QSYxrQqgSin5GMyokl1rWc9TeB7-xYY_dEEbvbId7SGHoc-JSN6YAEQdokgPsoOtSZwOGHsJqj9PoO__Pjn7ocZOC71fY9sPOu1eggW3wf16AL-hTa7sIX4_xFD3-_PGwuC5u765uFpe3hROV0oVidV0rQWRTa0kE1S1lzbJmUlnmAHLZMqHbpnVScyYqoarMgOJ2WYl8LD9F3w5zt2F4ShBHs_FxWtz2MKRoqM4KpJrA-gC6MMQYoDXbgwhDiZkcm7WZVJpJpZkcmxfHZpdbz45_pOUGmrfGo9QMnB8BG7PRNtje-fjGScYpr0TmLg7cX9_B_t0LmF-_F1PGnwHP8Zi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19164562</pqid></control><display><type>article</type><title>Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Munns, Shane E. ; Meloni, Bruno P. ; Knuckey, Neville W. ; Arthur, Peter G.</creator><creatorcontrib>Munns, Shane E. ; Meloni, Bruno P. ; Knuckey, Neville W. ; Arthur, Peter G.</creatorcontrib><description>It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incubation immature and mature cultures reduced cellular energy use by 80% and 45%, respectively. Reduced cellular energy use dramatically affected ATP depletion in neuronal cultures under anoxia. Intracellular ATP stores were expected to deplete within 3 min of anoxia. However, ATP was maintained at decreased but stabilized concentrations for at least 3 h. The capacity of neuronal cultures to reduce cellular energy use during anoxia correlated with their sensitivity towards simulated ischemia. Immature cultures, with the largest capacity to reduce cellular energy use, survived simulated ischemia 2.5 times longer than mature cultures. The addition of glutamate receptor antagonists to mature cultures further decreased cellular energy use during anoxia and significantly extended their survival time under simulated ischemia. This study verifies that primary cortical neuronal cultures reduce cellular energy use during energy deprivation. Additionally, we show that maturation of glutamate receptor activity increases non‐depressible energy demand in neuronal cultures.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2003.02049.x</identifier><identifier>PMID: 14535958</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; anoxia ; Biochemistry and metabolism ; Biological and medical sciences ; Cell Hypoxia - physiology ; Cells, Cultured ; cellular energy use ; Central nervous system ; Cerebral Cortex - cytology ; Energy Metabolism - physiology ; Excitatory Amino Acid Antagonists - pharmacology ; Fundamental and applied biological sciences. Psychology ; Glucose - metabolism ; glutamate receptors ; Glutamic Acid - toxicity ; Glycogen - metabolism ; ischemia ; metabolic depression ; neuron ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Neurotoxins - toxicity ; Oxygen - metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Glutamate - drug effects ; Receptors, Glutamate - metabolism ; Time Factors ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurochemistry, 2003-11, Vol.87 (3), p.764-772</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-628886405d8950419f12db8256a2cee5d8a249fdfc59324746719fe63ab740223</citedby><cites>FETCH-LOGICAL-c4769-628886405d8950419f12db8256a2cee5d8a249fdfc59324746719fe63ab740223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2003.02049.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2003.02049.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15231374$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14535958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Munns, Shane E.</creatorcontrib><creatorcontrib>Meloni, Bruno P.</creatorcontrib><creatorcontrib>Knuckey, Neville W.</creatorcontrib><creatorcontrib>Arthur, Peter G.</creatorcontrib><title>Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incubation immature and mature cultures reduced cellular energy use by 80% and 45%, respectively. Reduced cellular energy use dramatically affected ATP depletion in neuronal cultures under anoxia. Intracellular ATP stores were expected to deplete within 3 min of anoxia. However, ATP was maintained at decreased but stabilized concentrations for at least 3 h. The capacity of neuronal cultures to reduce cellular energy use during anoxia correlated with their sensitivity towards simulated ischemia. Immature cultures, with the largest capacity to reduce cellular energy use, survived simulated ischemia 2.5 times longer than mature cultures. The addition of glutamate receptor antagonists to mature cultures further decreased cellular energy use during anoxia and significantly extended their survival time under simulated ischemia. This study verifies that primary cortical neuronal cultures reduce cellular energy use during energy deprivation. Additionally, we show that maturation of glutamate receptor activity increases non‐depressible energy demand in neuronal cultures.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>anoxia</subject><subject>Biochemistry and metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured</subject><subject>cellular energy use</subject><subject>Central nervous system</subject><subject>Cerebral Cortex - cytology</subject><subject>Energy Metabolism - physiology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose - metabolism</subject><subject>glutamate receptors</subject><subject>Glutamic Acid - toxicity</subject><subject>Glycogen - metabolism</subject><subject>ischemia</subject><subject>metabolic depression</subject><subject>neuron</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurotoxins - toxicity</subject><subject>Oxygen - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Glutamate - drug effects</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1PGzEQQK2qVRNo_wLyhd526-9dHzigqAUqVDjA2XK8s5GjzW6w123SX4-XhHLlNKPxm_HMQwhTUlIi1Pd1SUVFC0GlLhkhvCSMCF3uPqD5_4ePaE4IYwUngs3QSYxrQqgSin5GMyokl1rWc9TeB7-xYY_dEEbvbId7SGHoc-JSN6YAEQdokgPsoOtSZwOGHsJqj9PoO__Pjn7ocZOC71fY9sPOu1eggW3wf16AL-hTa7sIX4_xFD3-_PGwuC5u765uFpe3hROV0oVidV0rQWRTa0kE1S1lzbJmUlnmAHLZMqHbpnVScyYqoarMgOJ2WYl8LD9F3w5zt2F4ShBHs_FxWtz2MKRoqM4KpJrA-gC6MMQYoDXbgwhDiZkcm7WZVJpJpZkcmxfHZpdbz45_pOUGmrfGo9QMnB8BG7PRNtje-fjGScYpr0TmLg7cX9_B_t0LmF-_F1PGnwHP8Zi8</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Munns, Shane E.</creator><creator>Meloni, Bruno P.</creator><creator>Knuckey, Neville W.</creator><creator>Arthur, Peter G.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200311</creationdate><title>Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation</title><author>Munns, Shane E. ; Meloni, Bruno P. ; Knuckey, Neville W. ; Arthur, Peter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-628886405d8950419f12db8256a2cee5d8a249fdfc59324746719fe63ab740223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>anoxia</topic><topic>Biochemistry and metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured</topic><topic>cellular energy use</topic><topic>Central nervous system</topic><topic>Cerebral Cortex - cytology</topic><topic>Energy Metabolism - physiology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose - metabolism</topic><topic>glutamate receptors</topic><topic>Glutamic Acid - toxicity</topic><topic>Glycogen - metabolism</topic><topic>ischemia</topic><topic>metabolic depression</topic><topic>neuron</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurotoxins - toxicity</topic><topic>Oxygen - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Glutamate - drug effects</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munns, Shane E.</creatorcontrib><creatorcontrib>Meloni, Bruno P.</creatorcontrib><creatorcontrib>Knuckey, Neville W.</creatorcontrib><creatorcontrib>Arthur, Peter G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munns, Shane E.</au><au>Meloni, Bruno P.</au><au>Knuckey, Neville W.</au><au>Arthur, Peter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2003-11</date><risdate>2003</risdate><volume>87</volume><issue>3</issue><spage>764</spage><epage>772</epage><pages>764-772</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incubation immature and mature cultures reduced cellular energy use by 80% and 45%, respectively. Reduced cellular energy use dramatically affected ATP depletion in neuronal cultures under anoxia. Intracellular ATP stores were expected to deplete within 3 min of anoxia. However, ATP was maintained at decreased but stabilized concentrations for at least 3 h. The capacity of neuronal cultures to reduce cellular energy use during anoxia correlated with their sensitivity towards simulated ischemia. Immature cultures, with the largest capacity to reduce cellular energy use, survived simulated ischemia 2.5 times longer than mature cultures. The addition of glutamate receptor antagonists to mature cultures further decreased cellular energy use during anoxia and significantly extended their survival time under simulated ischemia. This study verifies that primary cortical neuronal cultures reduce cellular energy use during energy deprivation. Additionally, we show that maturation of glutamate receptor activity increases non‐depressible energy demand in neuronal cultures.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14535958</pmid><doi>10.1046/j.1471-4159.2003.02049.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2003-11, Vol.87 (3), p.764-772
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_19164562
source MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphate - metabolism
Animals
anoxia
Biochemistry and metabolism
Biological and medical sciences
Cell Hypoxia - physiology
Cells, Cultured
cellular energy use
Central nervous system
Cerebral Cortex - cytology
Energy Metabolism - physiology
Excitatory Amino Acid Antagonists - pharmacology
Fundamental and applied biological sciences. Psychology
Glucose - metabolism
glutamate receptors
Glutamic Acid - toxicity
Glycogen - metabolism
ischemia
metabolic depression
neuron
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Neurotoxins - toxicity
Oxygen - metabolism
Rats
Rats, Sprague-Dawley
Receptors, Glutamate - drug effects
Receptors, Glutamate - metabolism
Time Factors
Vertebrates: nervous system and sense organs
title Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primary%20cortical%20neuronal%20cultures%20reduce%20cellular%20energy%20utilization%20during%20anoxic%20energy%20deprivation&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Munns,%20Shane%20E.&rft.date=2003-11&rft.volume=87&rft.issue=3&rft.spage=764&rft.epage=772&rft.pages=764-772&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2003.02049.x&rft_dat=%3Cproquest_cross%3E19164562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19164562&rft_id=info:pmid/14535958&rfr_iscdi=true