Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation
It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incuba...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2003-11, Vol.87 (3), p.764-772 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 772 |
---|---|
container_issue | 3 |
container_start_page | 764 |
container_title | Journal of neurochemistry |
container_volume | 87 |
creator | Munns, Shane E. Meloni, Bruno P. Knuckey, Neville W. Arthur, Peter G. |
description | It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incubation immature and mature cultures reduced cellular energy use by 80% and 45%, respectively. Reduced cellular energy use dramatically affected ATP depletion in neuronal cultures under anoxia. Intracellular ATP stores were expected to deplete within 3 min of anoxia. However, ATP was maintained at decreased but stabilized concentrations for at least 3 h. The capacity of neuronal cultures to reduce cellular energy use during anoxia correlated with their sensitivity towards simulated ischemia. Immature cultures, with the largest capacity to reduce cellular energy use, survived simulated ischemia 2.5 times longer than mature cultures. The addition of glutamate receptor antagonists to mature cultures further decreased cellular energy use during anoxia and significantly extended their survival time under simulated ischemia. This study verifies that primary cortical neuronal cultures reduce cellular energy use during energy deprivation. Additionally, we show that maturation of glutamate receptor activity increases non‐depressible energy demand in neuronal cultures. |
doi_str_mv | 10.1046/j.1471-4159.2003.02049.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19164562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19164562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-628886405d8950419f12db8256a2cee5d8a249fdfc59324746719fe63ab740223</originalsourceid><addsrcrecordid>eNqNkE1PGzEQQK2qVRNo_wLyhd526-9dHzigqAUqVDjA2XK8s5GjzW6w123SX4-XhHLlNKPxm_HMQwhTUlIi1Pd1SUVFC0GlLhkhvCSMCF3uPqD5_4ePaE4IYwUngs3QSYxrQqgSin5GMyokl1rWc9TeB7-xYY_dEEbvbId7SGHoc-JSN6YAEQdokgPsoOtSZwOGHsJqj9PoO__Pjn7ocZOC71fY9sPOu1eggW3wf16AL-hTa7sIX4_xFD3-_PGwuC5u765uFpe3hROV0oVidV0rQWRTa0kE1S1lzbJmUlnmAHLZMqHbpnVScyYqoarMgOJ2WYl8LD9F3w5zt2F4ShBHs_FxWtz2MKRoqM4KpJrA-gC6MMQYoDXbgwhDiZkcm7WZVJpJpZkcmxfHZpdbz45_pOUGmrfGo9QMnB8BG7PRNtje-fjGScYpr0TmLg7cX9_B_t0LmF-_F1PGnwHP8Zi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19164562</pqid></control><display><type>article</type><title>Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Munns, Shane E. ; Meloni, Bruno P. ; Knuckey, Neville W. ; Arthur, Peter G.</creator><creatorcontrib>Munns, Shane E. ; Meloni, Bruno P. ; Knuckey, Neville W. ; Arthur, Peter G.</creatorcontrib><description>It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incubation immature and mature cultures reduced cellular energy use by 80% and 45%, respectively. Reduced cellular energy use dramatically affected ATP depletion in neuronal cultures under anoxia. Intracellular ATP stores were expected to deplete within 3 min of anoxia. However, ATP was maintained at decreased but stabilized concentrations for at least 3 h. The capacity of neuronal cultures to reduce cellular energy use during anoxia correlated with their sensitivity towards simulated ischemia. Immature cultures, with the largest capacity to reduce cellular energy use, survived simulated ischemia 2.5 times longer than mature cultures. The addition of glutamate receptor antagonists to mature cultures further decreased cellular energy use during anoxia and significantly extended their survival time under simulated ischemia. This study verifies that primary cortical neuronal cultures reduce cellular energy use during energy deprivation. Additionally, we show that maturation of glutamate receptor activity increases non‐depressible energy demand in neuronal cultures.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2003.02049.x</identifier><identifier>PMID: 14535958</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; anoxia ; Biochemistry and metabolism ; Biological and medical sciences ; Cell Hypoxia - physiology ; Cells, Cultured ; cellular energy use ; Central nervous system ; Cerebral Cortex - cytology ; Energy Metabolism - physiology ; Excitatory Amino Acid Antagonists - pharmacology ; Fundamental and applied biological sciences. Psychology ; Glucose - metabolism ; glutamate receptors ; Glutamic Acid - toxicity ; Glycogen - metabolism ; ischemia ; metabolic depression ; neuron ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Neurotoxins - toxicity ; Oxygen - metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Glutamate - drug effects ; Receptors, Glutamate - metabolism ; Time Factors ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurochemistry, 2003-11, Vol.87 (3), p.764-772</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-628886405d8950419f12db8256a2cee5d8a249fdfc59324746719fe63ab740223</citedby><cites>FETCH-LOGICAL-c4769-628886405d8950419f12db8256a2cee5d8a249fdfc59324746719fe63ab740223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2003.02049.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2003.02049.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15231374$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14535958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Munns, Shane E.</creatorcontrib><creatorcontrib>Meloni, Bruno P.</creatorcontrib><creatorcontrib>Knuckey, Neville W.</creatorcontrib><creatorcontrib>Arthur, Peter G.</creatorcontrib><title>Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incubation immature and mature cultures reduced cellular energy use by 80% and 45%, respectively. Reduced cellular energy use dramatically affected ATP depletion in neuronal cultures under anoxia. Intracellular ATP stores were expected to deplete within 3 min of anoxia. However, ATP was maintained at decreased but stabilized concentrations for at least 3 h. The capacity of neuronal cultures to reduce cellular energy use during anoxia correlated with their sensitivity towards simulated ischemia. Immature cultures, with the largest capacity to reduce cellular energy use, survived simulated ischemia 2.5 times longer than mature cultures. The addition of glutamate receptor antagonists to mature cultures further decreased cellular energy use during anoxia and significantly extended their survival time under simulated ischemia. This study verifies that primary cortical neuronal cultures reduce cellular energy use during energy deprivation. Additionally, we show that maturation of glutamate receptor activity increases non‐depressible energy demand in neuronal cultures.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>anoxia</subject><subject>Biochemistry and metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured</subject><subject>cellular energy use</subject><subject>Central nervous system</subject><subject>Cerebral Cortex - cytology</subject><subject>Energy Metabolism - physiology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose - metabolism</subject><subject>glutamate receptors</subject><subject>Glutamic Acid - toxicity</subject><subject>Glycogen - metabolism</subject><subject>ischemia</subject><subject>metabolic depression</subject><subject>neuron</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurotoxins - toxicity</subject><subject>Oxygen - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Glutamate - drug effects</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1PGzEQQK2qVRNo_wLyhd526-9dHzigqAUqVDjA2XK8s5GjzW6w123SX4-XhHLlNKPxm_HMQwhTUlIi1Pd1SUVFC0GlLhkhvCSMCF3uPqD5_4ePaE4IYwUngs3QSYxrQqgSin5GMyokl1rWc9TeB7-xYY_dEEbvbId7SGHoc-JSN6YAEQdokgPsoOtSZwOGHsJqj9PoO__Pjn7ocZOC71fY9sPOu1eggW3wf16AL-hTa7sIX4_xFD3-_PGwuC5u765uFpe3hROV0oVidV0rQWRTa0kE1S1lzbJmUlnmAHLZMqHbpnVScyYqoarMgOJ2WYl8LD9F3w5zt2F4ShBHs_FxWtz2MKRoqM4KpJrA-gC6MMQYoDXbgwhDiZkcm7WZVJpJpZkcmxfHZpdbz45_pOUGmrfGo9QMnB8BG7PRNtje-fjGScYpr0TmLg7cX9_B_t0LmF-_F1PGnwHP8Zi8</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Munns, Shane E.</creator><creator>Meloni, Bruno P.</creator><creator>Knuckey, Neville W.</creator><creator>Arthur, Peter G.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200311</creationdate><title>Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation</title><author>Munns, Shane E. ; Meloni, Bruno P. ; Knuckey, Neville W. ; Arthur, Peter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-628886405d8950419f12db8256a2cee5d8a249fdfc59324746719fe63ab740223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>anoxia</topic><topic>Biochemistry and metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured</topic><topic>cellular energy use</topic><topic>Central nervous system</topic><topic>Cerebral Cortex - cytology</topic><topic>Energy Metabolism - physiology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose - metabolism</topic><topic>glutamate receptors</topic><topic>Glutamic Acid - toxicity</topic><topic>Glycogen - metabolism</topic><topic>ischemia</topic><topic>metabolic depression</topic><topic>neuron</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurotoxins - toxicity</topic><topic>Oxygen - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Glutamate - drug effects</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munns, Shane E.</creatorcontrib><creatorcontrib>Meloni, Bruno P.</creatorcontrib><creatorcontrib>Knuckey, Neville W.</creatorcontrib><creatorcontrib>Arthur, Peter G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munns, Shane E.</au><au>Meloni, Bruno P.</au><au>Knuckey, Neville W.</au><au>Arthur, Peter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2003-11</date><risdate>2003</risdate><volume>87</volume><issue>3</issue><spage>764</spage><epage>772</epage><pages>764-772</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>It has been widely hypothesized that neurons reduce cellular energy use in response to periods of energy deprivation. To test this hypothesis, we measured rates of energy use under normoxia and anoxia in immature (6 days in vitro) and mature (13 days in vitro) neuronal cultures. During anoxic incubation immature and mature cultures reduced cellular energy use by 80% and 45%, respectively. Reduced cellular energy use dramatically affected ATP depletion in neuronal cultures under anoxia. Intracellular ATP stores were expected to deplete within 3 min of anoxia. However, ATP was maintained at decreased but stabilized concentrations for at least 3 h. The capacity of neuronal cultures to reduce cellular energy use during anoxia correlated with their sensitivity towards simulated ischemia. Immature cultures, with the largest capacity to reduce cellular energy use, survived simulated ischemia 2.5 times longer than mature cultures. The addition of glutamate receptor antagonists to mature cultures further decreased cellular energy use during anoxia and significantly extended their survival time under simulated ischemia. This study verifies that primary cortical neuronal cultures reduce cellular energy use during energy deprivation. Additionally, we show that maturation of glutamate receptor activity increases non‐depressible energy demand in neuronal cultures.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14535958</pmid><doi>10.1046/j.1471-4159.2003.02049.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2003-11, Vol.87 (3), p.764-772 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_19164562 |
source | MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphate - metabolism Animals anoxia Biochemistry and metabolism Biological and medical sciences Cell Hypoxia - physiology Cells, Cultured cellular energy use Central nervous system Cerebral Cortex - cytology Energy Metabolism - physiology Excitatory Amino Acid Antagonists - pharmacology Fundamental and applied biological sciences. Psychology Glucose - metabolism glutamate receptors Glutamic Acid - toxicity Glycogen - metabolism ischemia metabolic depression neuron Neurons - cytology Neurons - drug effects Neurons - metabolism Neurotoxins - toxicity Oxygen - metabolism Rats Rats, Sprague-Dawley Receptors, Glutamate - drug effects Receptors, Glutamate - metabolism Time Factors Vertebrates: nervous system and sense organs |
title | Primary cortical neuronal cultures reduce cellular energy utilization during anoxic energy deprivation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primary%20cortical%20neuronal%20cultures%20reduce%20cellular%20energy%20utilization%20during%20anoxic%20energy%20deprivation&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Munns,%20Shane%20E.&rft.date=2003-11&rft.volume=87&rft.issue=3&rft.spage=764&rft.epage=772&rft.pages=764-772&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2003.02049.x&rft_dat=%3Cproquest_cross%3E19164562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19164562&rft_id=info:pmid/14535958&rfr_iscdi=true |