An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability

Abstract Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016). We present the design and fabrication of an active balance board system that allows for a system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2017-07, Vol.60, p.48-56
Hauptverfasser: Cruise, Denise R, Chagdes, James R, Liddy, Joshua J, Rietdyk, Shirley, Haddad, Jeffrey M, Zelaznik, Howard N, Raman, Arvind
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue
container_start_page 48
container_title Journal of biomechanics
container_volume 60
creator Cruise, Denise R
Chagdes, James R
Liddy, Joshua J
Rietdyk, Shirley
Haddad, Jeffrey M
Zelaznik, Howard N
Raman, Arvind
description Abstract Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance.
doi_str_mv 10.1016/j.jbiomech.2017.06.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1915556339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929017303159</els_id><sourcerecordid>1925902872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-1f2f1aecb81f65aa180007fc66ad9821c759e0769de15d10411083aebd9530243</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSMEokvhK1SWuHBJmHE2jn1BVBX_pEocgLPlOBPVIYkX29sqEh8eR9uC1AunOczvjef5TVFcIFQIKN6O1dg5P5O9qThgW4GoAOWTYoeyrUteS3ha7AA4loorOCtexDgCQLtv1fPijEshJEqxK35fLszY5G6JdWYyi83Vm9CzuMZEM7tz6YYFMlOZ3EzM-iUFPzE_sJjcMCwUIzNLz7Zu2dNkVpY8MzFujW09s7g4x01w8DEdg5my0nRucml9WTwbzBTp1X09L358_PD96nN5_fXTl6vL69I2-zaVOPABDdlO4iAaY1BuTgYrhOmV5GjbRhG0QvWETY-wRwRZG-p61dTA9_V58eY09xD8ryPFpGcXLU3ZL_lj1KiwaRpR1yqjrx-hoz-GJW-XKd4o4LLlmRInygYfY6BBH4KbTVg1gt7y0aN-yEdv-WgQOueThRf344_dTP1f2UMgGXh_Aij_x62joKN1lGPpXSCbdO_d_99492iEndzirJl-0krxnx8duQb9bbuS7UiwraHGRtV_AD1Kuks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925902872</pqid></control><display><type>article</type><title>An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central</source><creator>Cruise, Denise R ; Chagdes, James R ; Liddy, Joshua J ; Rietdyk, Shirley ; Haddad, Jeffrey M ; Zelaznik, Howard N ; Raman, Arvind</creator><creatorcontrib>Cruise, Denise R ; Chagdes, James R ; Liddy, Joshua J ; Rietdyk, Shirley ; Haddad, Jeffrey M ; Zelaznik, Howard N ; Raman, Arvind</creatorcontrib><description>Abstract Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2017.06.018</identifier><identifier>PMID: 28668186</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Active control ; Adults ; Ankle ; Balance ; Balance board ; Balance model ; Control stability ; Delay ; Diagnostic Equipment ; Disorders ; Fabrication ; Feedback ; Human balance control ; Humans ; Limit cycle oscillations ; Male ; Mathematical models ; Neurological diseases ; Neuromuscular system ; Older people ; Ordinary differential equations ; Oscillations ; Physical Medicine and Rehabilitation ; Postural Balance ; Posture ; Prevention programs ; Real time ; Rehabilitation ; Sensation Disorders - diagnosis ; Stability analysis ; Stiffness ; Time-delay ; Young Adult ; Young adults</subject><ispartof>Journal of biomechanics, 2017-07, Vol.60, p.48-56</ispartof><rights>Elsevier Ltd</rights><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 26, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-1f2f1aecb81f65aa180007fc66ad9821c759e0769de15d10411083aebd9530243</citedby><cites>FETCH-LOGICAL-c547t-1f2f1aecb81f65aa180007fc66ad9821c759e0769de15d10411083aebd9530243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1925902872?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28668186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruise, Denise R</creatorcontrib><creatorcontrib>Chagdes, James R</creatorcontrib><creatorcontrib>Liddy, Joshua J</creatorcontrib><creatorcontrib>Rietdyk, Shirley</creatorcontrib><creatorcontrib>Haddad, Jeffrey M</creatorcontrib><creatorcontrib>Zelaznik, Howard N</creatorcontrib><creatorcontrib>Raman, Arvind</creatorcontrib><title>An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance.</description><subject>Active control</subject><subject>Adults</subject><subject>Ankle</subject><subject>Balance</subject><subject>Balance board</subject><subject>Balance model</subject><subject>Control stability</subject><subject>Delay</subject><subject>Diagnostic Equipment</subject><subject>Disorders</subject><subject>Fabrication</subject><subject>Feedback</subject><subject>Human balance control</subject><subject>Humans</subject><subject>Limit cycle oscillations</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Neurological diseases</subject><subject>Neuromuscular system</subject><subject>Older people</subject><subject>Ordinary differential equations</subject><subject>Oscillations</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Postural Balance</subject><subject>Posture</subject><subject>Prevention programs</subject><subject>Real time</subject><subject>Rehabilitation</subject><subject>Sensation Disorders - diagnosis</subject><subject>Stability analysis</subject><subject>Stiffness</subject><subject>Time-delay</subject><subject>Young Adult</subject><subject>Young adults</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkk9v1DAQxSMEokvhK1SWuHBJmHE2jn1BVBX_pEocgLPlOBPVIYkX29sqEh8eR9uC1AunOczvjef5TVFcIFQIKN6O1dg5P5O9qThgW4GoAOWTYoeyrUteS3ha7AA4loorOCtexDgCQLtv1fPijEshJEqxK35fLszY5G6JdWYyi83Vm9CzuMZEM7tz6YYFMlOZ3EzM-iUFPzE_sJjcMCwUIzNLz7Zu2dNkVpY8MzFujW09s7g4x01w8DEdg5my0nRucml9WTwbzBTp1X09L358_PD96nN5_fXTl6vL69I2-zaVOPABDdlO4iAaY1BuTgYrhOmV5GjbRhG0QvWETY-wRwRZG-p61dTA9_V58eY09xD8ryPFpGcXLU3ZL_lj1KiwaRpR1yqjrx-hoz-GJW-XKd4o4LLlmRInygYfY6BBH4KbTVg1gt7y0aN-yEdv-WgQOueThRf344_dTP1f2UMgGXh_Aij_x62joKN1lGPpXSCbdO_d_99492iEndzirJl-0krxnx8duQb9bbuS7UiwraHGRtV_AD1Kuks</recordid><startdate>20170726</startdate><enddate>20170726</enddate><creator>Cruise, Denise R</creator><creator>Chagdes, James R</creator><creator>Liddy, Joshua J</creator><creator>Rietdyk, Shirley</creator><creator>Haddad, Jeffrey M</creator><creator>Zelaznik, Howard N</creator><creator>Raman, Arvind</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170726</creationdate><title>An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability</title><author>Cruise, Denise R ; Chagdes, James R ; Liddy, Joshua J ; Rietdyk, Shirley ; Haddad, Jeffrey M ; Zelaznik, Howard N ; Raman, Arvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-1f2f1aecb81f65aa180007fc66ad9821c759e0769de15d10411083aebd9530243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active control</topic><topic>Adults</topic><topic>Ankle</topic><topic>Balance</topic><topic>Balance board</topic><topic>Balance model</topic><topic>Control stability</topic><topic>Delay</topic><topic>Diagnostic Equipment</topic><topic>Disorders</topic><topic>Fabrication</topic><topic>Feedback</topic><topic>Human balance control</topic><topic>Humans</topic><topic>Limit cycle oscillations</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Neurological diseases</topic><topic>Neuromuscular system</topic><topic>Older people</topic><topic>Ordinary differential equations</topic><topic>Oscillations</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Postural Balance</topic><topic>Posture</topic><topic>Prevention programs</topic><topic>Real time</topic><topic>Rehabilitation</topic><topic>Sensation Disorders - diagnosis</topic><topic>Stability analysis</topic><topic>Stiffness</topic><topic>Time-delay</topic><topic>Young Adult</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruise, Denise R</creatorcontrib><creatorcontrib>Chagdes, James R</creatorcontrib><creatorcontrib>Liddy, Joshua J</creatorcontrib><creatorcontrib>Rietdyk, Shirley</creatorcontrib><creatorcontrib>Haddad, Jeffrey M</creatorcontrib><creatorcontrib>Zelaznik, Howard N</creatorcontrib><creatorcontrib>Raman, Arvind</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruise, Denise R</au><au>Chagdes, James R</au><au>Liddy, Joshua J</au><au>Rietdyk, Shirley</au><au>Haddad, Jeffrey M</au><au>Zelaznik, Howard N</au><au>Raman, Arvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2017-07-26</date><risdate>2017</risdate><volume>60</volume><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28668186</pmid><doi>10.1016/j.jbiomech.2017.06.018</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2017-07, Vol.60, p.48-56
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_1915556339
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central
subjects Active control
Adults
Ankle
Balance
Balance board
Balance model
Control stability
Delay
Diagnostic Equipment
Disorders
Fabrication
Feedback
Human balance control
Humans
Limit cycle oscillations
Male
Mathematical models
Neurological diseases
Neuromuscular system
Older people
Ordinary differential equations
Oscillations
Physical Medicine and Rehabilitation
Postural Balance
Posture
Prevention programs
Real time
Rehabilitation
Sensation Disorders - diagnosis
Stability analysis
Stiffness
Time-delay
Young Adult
Young adults
title An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20active%20balance%20board%20system%20with%20real-time%20control%20of%20stiffness%20and%20time-delay%20to%20assess%20mechanisms%20of%20postural%20stability&rft.jtitle=Journal%20of%20biomechanics&rft.au=Cruise,%20Denise%20R&rft.date=2017-07-26&rft.volume=60&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2017.06.018&rft_dat=%3Cproquest_cross%3E1925902872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925902872&rft_id=info:pmid/28668186&rft_els_id=1_s2_0_S0021929017303159&rfr_iscdi=true