Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators

Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-06, Vol.118 (24), p.243602-243602, Article 243602
Hauptverfasser: Lörch, Niels, Nigg, Simon E, Nunnenkamp, Andreas, Tiwari, Rakesh P, Bruder, Christoph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243602
container_issue 24
container_start_page 243602
container_title Physical review letters
container_volume 118
creator Lörch, Niels
Nigg, Simon E
Nunnenkamp, Andreas
Tiwari, Rakesh P
Bruder, Christoph
description Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.
doi_str_mv 10.1103/PhysRevLett.118.243602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1915349756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915349756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a47b4356ebce6dd3d0db518050b3a446d82f517264e9f87839d08e88d54b1aa63</originalsourceid><addsrcrecordid>eNplkNtKw0AQhhdRbK2-QsmlN6mz2WO801JtoeD5Omx2NzaaQ91NhPj0prYVwauBme-fGT6ExhgmGAO5uF91_tF-Lm3T9A05iSjhEB2gIQYRhwJjeoiGAASHMYAYoBPv3wAAR1weo0EkOWecwhBlD62qmrYMnrpKr1xd5V-qyesquC5q_a6MvQxmlXWvXfAD7qfzvDLW-X-pOgsWxvacVkVw53VeFKqpnT9FR5kqvD3b1RF6uZk9T-fh8u52Mb1ahpoI0YSKipQSxm2qLTeGGDApwxIYpERRyo2MMoZFxKmNMykkiQ1IK6VhNMVKcTJC59u9a1d_tNY3SZl7bfsvKlu3PsExZoTGgm1QvkW1q713NkvWLi-V6xIMycZx8sdx35DJ1nEfHO9utGlpzW9sL5V8A0ipfR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915349756</pqid></control><display><type>article</type><title>Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators</title><source>American Physical Society Journals</source><creator>Lörch, Niels ; Nigg, Simon E ; Nunnenkamp, Andreas ; Tiwari, Rakesh P ; Bruder, Christoph</creator><creatorcontrib>Lörch, Niels ; Nigg, Simon E ; Nunnenkamp, Andreas ; Tiwari, Rakesh P ; Bruder, Christoph</creatorcontrib><description>Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.118.243602</identifier><identifier>PMID: 28665640</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2017-06, Vol.118 (24), p.243602-243602, Article 243602</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-a47b4356ebce6dd3d0db518050b3a446d82f517264e9f87839d08e88d54b1aa63</citedby><cites>FETCH-LOGICAL-c377t-a47b4356ebce6dd3d0db518050b3a446d82f517264e9f87839d08e88d54b1aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28665640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lörch, Niels</creatorcontrib><creatorcontrib>Nigg, Simon E</creatorcontrib><creatorcontrib>Nunnenkamp, Andreas</creatorcontrib><creatorcontrib>Tiwari, Rakesh P</creatorcontrib><creatorcontrib>Bruder, Christoph</creatorcontrib><title>Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkNtKw0AQhhdRbK2-QsmlN6mz2WO801JtoeD5Omx2NzaaQ91NhPj0prYVwauBme-fGT6ExhgmGAO5uF91_tF-Lm3T9A05iSjhEB2gIQYRhwJjeoiGAASHMYAYoBPv3wAAR1weo0EkOWecwhBlD62qmrYMnrpKr1xd5V-qyesquC5q_a6MvQxmlXWvXfAD7qfzvDLW-X-pOgsWxvacVkVw53VeFKqpnT9FR5kqvD3b1RF6uZk9T-fh8u52Mb1ahpoI0YSKipQSxm2qLTeGGDApwxIYpERRyo2MMoZFxKmNMykkiQ1IK6VhNMVKcTJC59u9a1d_tNY3SZl7bfsvKlu3PsExZoTGgm1QvkW1q713NkvWLi-V6xIMycZx8sdx35DJ1nEfHO9utGlpzW9sL5V8A0ipfR4</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Lörch, Niels</creator><creator>Nigg, Simon E</creator><creator>Nunnenkamp, Andreas</creator><creator>Tiwari, Rakesh P</creator><creator>Bruder, Christoph</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170615</creationdate><title>Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators</title><author>Lörch, Niels ; Nigg, Simon E ; Nunnenkamp, Andreas ; Tiwari, Rakesh P ; Bruder, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a47b4356ebce6dd3d0db518050b3a446d82f517264e9f87839d08e88d54b1aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lörch, Niels</creatorcontrib><creatorcontrib>Nigg, Simon E</creatorcontrib><creatorcontrib>Nunnenkamp, Andreas</creatorcontrib><creatorcontrib>Tiwari, Rakesh P</creatorcontrib><creatorcontrib>Bruder, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lörch, Niels</au><au>Nigg, Simon E</au><au>Nunnenkamp, Andreas</au><au>Tiwari, Rakesh P</au><au>Bruder, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>118</volume><issue>24</issue><spage>243602</spage><epage>243602</epage><pages>243602-243602</pages><artnum>243602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.</abstract><cop>United States</cop><pmid>28665640</pmid><doi>10.1103/PhysRevLett.118.243602</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-06, Vol.118 (24), p.243602-243602, Article 243602
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1915349756
source American Physical Society Journals
title Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Synchronization%20Blockade:%20Energy%20Quantization%20Hinders%20Synchronization%20of%20Identical%20Oscillators&rft.jtitle=Physical%20review%20letters&rft.au=L%C3%B6rch,%20Niels&rft.date=2017-06-15&rft.volume=118&rft.issue=24&rft.spage=243602&rft.epage=243602&rft.pages=243602-243602&rft.artnum=243602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.118.243602&rft_dat=%3Cproquest_cross%3E1915349756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915349756&rft_id=info:pmid/28665640&rfr_iscdi=true