Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence

Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2017-09, Vol.215 (4), p.1594-1608
Hauptverfasser: Magney, Troy S., Frankenberg, Christian, Fisher, Joshua B., Sun, Ying, North, Gretchen B., Davis, Thomas S., Kornfeld, Ari, Siebke, Katharina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1608
container_issue 4
container_start_page 1594
container_title The New phytologist
container_volume 215
creator Magney, Troy S.
Frankenberg, Christian
Fisher, Joshua B.
Sun, Ying
North, Gretchen B.
Davis, Thomas S.
Kornfeld, Ari
Siebke, Katharina
description Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view – allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (Fλ , 670–850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t) and saturation pulses (maximal fluorescence yields, F m). Our results suggest that this method can accurately reproduce the full Chl emission spectra – capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ.
doi_str_mv 10.1111/nph.14662
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1915343887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90011681</jstor_id><sourcerecordid>90011681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-c450a69d237c291e2fdbcc35ffd3120f66fb15aa55ebfa5d97648214f301199a3</originalsourceid><addsrcrecordid>eNp1kT9PwzAQxS0EoqUw8AFAkVhgSOv_iQcGVAFFqoABJLbISWySKo2DnVD12-OStgMSHvxu-N3T3TsAzhEcI_8mdVOMEeUcH4ChVxHGiESHYAghjkNO-ccAnDi3gBAKxvExGOCYc8ooHoLbqalrlbVl_RlIL98qaE3QSOc2pa46Y5XLVJ2pYFW2RdAUpjVuXbeFcqU7BUdaVk6dbXUE3h_u36azcP7y-DS9m4cZRRD7n0HJRY5JlGGBFNZ5mmWEaZ0ThKHmXKeIScmYSrVkuYg4jTGimkCEhJBkBK5738aar065NlmWfqqqkrUynUuQQIxQEseRR6_-oAvT2dpP5ynMGIwpjT1101OZNc5ZpZPGlktp1wmCySbTxGea_Gbq2cutY5cuVb4ndyF6YNIDq7JS6_-dkufX2c7you9YuNbYfYeAfl_uj_cDUf-Jag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925508448</pqid></control><display><type>article</type><title>Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Magney, Troy S. ; Frankenberg, Christian ; Fisher, Joshua B. ; Sun, Ying ; North, Gretchen B. ; Davis, Thomas S. ; Kornfeld, Ari ; Siebke, Katharina</creator><creatorcontrib>Magney, Troy S. ; Frankenberg, Christian ; Fisher, Joshua B. ; Sun, Ying ; North, Gretchen B. ; Davis, Thomas S. ; Kornfeld, Ari ; Siebke, Katharina</creatorcontrib><description>Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view – allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (Fλ , 670–850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t) and saturation pulses (maximal fluorescence yields, F m). Our results suggest that this method can accurately reproduce the full Chl emission spectra – capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14662</identifier><identifier>PMID: 28664542</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Capacity ; Chl fluorescence ; Chlorophyll ; Chlorophyll - analysis ; Computer Simulation ; Connecting ; Dynamics ; Emission measurements ; Emission spectra ; Environmental conditions ; Field of view ; Fluorescence ; fluorescence spectra ; Gas exchange ; gross primary production ; leaf level ; Leaves ; Luminous intensity ; Mapping ; Methods ; Photochemistry ; Photosynthesis ; Photosynthesis - radiation effects ; Plant Leaves - metabolism ; Plant Leaves - radiation effects ; Pulse amplitude modulation ; pulse‐amplitude modulation (PAM) ; Remote sensing ; Remote Sensing Technology - methods ; Saturation ; Soil - chemistry ; solar induced Chl fluorescence (SIF) ; Spectra ; Spectrometry, Fluorescence ; Temperature effects ; Terminology as Topic ; Vegetation ; Wavelength ; Wavelengths ; Yield</subject><ispartof>The New phytologist, 2017-09, Vol.215 (4), p.1594-1608</ispartof><rights>2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-c450a69d237c291e2fdbcc35ffd3120f66fb15aa55ebfa5d97648214f301199a3</citedby><cites>FETCH-LOGICAL-c4102-c450a69d237c291e2fdbcc35ffd3120f66fb15aa55ebfa5d97648214f301199a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90011681$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90011681$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,1432,27922,27923,45572,45573,46407,46831,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28664542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Magney, Troy S.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><creatorcontrib>Fisher, Joshua B.</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>North, Gretchen B.</creatorcontrib><creatorcontrib>Davis, Thomas S.</creatorcontrib><creatorcontrib>Kornfeld, Ari</creatorcontrib><creatorcontrib>Siebke, Katharina</creatorcontrib><title>Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view – allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (Fλ , 670–850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t) and saturation pulses (maximal fluorescence yields, F m). Our results suggest that this method can accurately reproduce the full Chl emission spectra – capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ.</description><subject>Capacity</subject><subject>Chl fluorescence</subject><subject>Chlorophyll</subject><subject>Chlorophyll - analysis</subject><subject>Computer Simulation</subject><subject>Connecting</subject><subject>Dynamics</subject><subject>Emission measurements</subject><subject>Emission spectra</subject><subject>Environmental conditions</subject><subject>Field of view</subject><subject>Fluorescence</subject><subject>fluorescence spectra</subject><subject>Gas exchange</subject><subject>gross primary production</subject><subject>leaf level</subject><subject>Leaves</subject><subject>Luminous intensity</subject><subject>Mapping</subject><subject>Methods</subject><subject>Photochemistry</subject><subject>Photosynthesis</subject><subject>Photosynthesis - radiation effects</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - radiation effects</subject><subject>Pulse amplitude modulation</subject><subject>pulse‐amplitude modulation (PAM)</subject><subject>Remote sensing</subject><subject>Remote Sensing Technology - methods</subject><subject>Saturation</subject><subject>Soil - chemistry</subject><subject>solar induced Chl fluorescence (SIF)</subject><subject>Spectra</subject><subject>Spectrometry, Fluorescence</subject><subject>Temperature effects</subject><subject>Terminology as Topic</subject><subject>Vegetation</subject><subject>Wavelength</subject><subject>Wavelengths</subject><subject>Yield</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kT9PwzAQxS0EoqUw8AFAkVhgSOv_iQcGVAFFqoABJLbISWySKo2DnVD12-OStgMSHvxu-N3T3TsAzhEcI_8mdVOMEeUcH4ChVxHGiESHYAghjkNO-ccAnDi3gBAKxvExGOCYc8ooHoLbqalrlbVl_RlIL98qaE3QSOc2pa46Y5XLVJ2pYFW2RdAUpjVuXbeFcqU7BUdaVk6dbXUE3h_u36azcP7y-DS9m4cZRRD7n0HJRY5JlGGBFNZ5mmWEaZ0ThKHmXKeIScmYSrVkuYg4jTGimkCEhJBkBK5738aar065NlmWfqqqkrUynUuQQIxQEseRR6_-oAvT2dpP5ynMGIwpjT1101OZNc5ZpZPGlktp1wmCySbTxGea_Gbq2cutY5cuVb4ndyF6YNIDq7JS6_-dkufX2c7you9YuNbYfYeAfl_uj_cDUf-Jag</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Magney, Troy S.</creator><creator>Frankenberg, Christian</creator><creator>Fisher, Joshua B.</creator><creator>Sun, Ying</creator><creator>North, Gretchen B.</creator><creator>Davis, Thomas S.</creator><creator>Kornfeld, Ari</creator><creator>Siebke, Katharina</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170901</creationdate><title>Connecting active to passive fluorescence with photosynthesis</title><author>Magney, Troy S. ; Frankenberg, Christian ; Fisher, Joshua B. ; Sun, Ying ; North, Gretchen B. ; Davis, Thomas S. ; Kornfeld, Ari ; Siebke, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-c450a69d237c291e2fdbcc35ffd3120f66fb15aa55ebfa5d97648214f301199a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacity</topic><topic>Chl fluorescence</topic><topic>Chlorophyll</topic><topic>Chlorophyll - analysis</topic><topic>Computer Simulation</topic><topic>Connecting</topic><topic>Dynamics</topic><topic>Emission measurements</topic><topic>Emission spectra</topic><topic>Environmental conditions</topic><topic>Field of view</topic><topic>Fluorescence</topic><topic>fluorescence spectra</topic><topic>Gas exchange</topic><topic>gross primary production</topic><topic>leaf level</topic><topic>Leaves</topic><topic>Luminous intensity</topic><topic>Mapping</topic><topic>Methods</topic><topic>Photochemistry</topic><topic>Photosynthesis</topic><topic>Photosynthesis - radiation effects</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - radiation effects</topic><topic>Pulse amplitude modulation</topic><topic>pulse‐amplitude modulation (PAM)</topic><topic>Remote sensing</topic><topic>Remote Sensing Technology - methods</topic><topic>Saturation</topic><topic>Soil - chemistry</topic><topic>solar induced Chl fluorescence (SIF)</topic><topic>Spectra</topic><topic>Spectrometry, Fluorescence</topic><topic>Temperature effects</topic><topic>Terminology as Topic</topic><topic>Vegetation</topic><topic>Wavelength</topic><topic>Wavelengths</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magney, Troy S.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><creatorcontrib>Fisher, Joshua B.</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>North, Gretchen B.</creatorcontrib><creatorcontrib>Davis, Thomas S.</creatorcontrib><creatorcontrib>Kornfeld, Ari</creatorcontrib><creatorcontrib>Siebke, Katharina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magney, Troy S.</au><au>Frankenberg, Christian</au><au>Fisher, Joshua B.</au><au>Sun, Ying</au><au>North, Gretchen B.</au><au>Davis, Thomas S.</au><au>Kornfeld, Ari</au><au>Siebke, Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>215</volume><issue>4</issue><spage>1594</spage><epage>1608</epage><pages>1594-1608</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view – allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (Fλ , 670–850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t) and saturation pulses (maximal fluorescence yields, F m). Our results suggest that this method can accurately reproduce the full Chl emission spectra – capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28664542</pmid><doi>10.1111/nph.14662</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2017-09, Vol.215 (4), p.1594-1608
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1915343887
source MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Capacity
Chl fluorescence
Chlorophyll
Chlorophyll - analysis
Computer Simulation
Connecting
Dynamics
Emission measurements
Emission spectra
Environmental conditions
Field of view
Fluorescence
fluorescence spectra
Gas exchange
gross primary production
leaf level
Leaves
Luminous intensity
Mapping
Methods
Photochemistry
Photosynthesis
Photosynthesis - radiation effects
Plant Leaves - metabolism
Plant Leaves - radiation effects
Pulse amplitude modulation
pulse‐amplitude modulation (PAM)
Remote sensing
Remote Sensing Technology - methods
Saturation
Soil - chemistry
solar induced Chl fluorescence (SIF)
Spectra
Spectrometry, Fluorescence
Temperature effects
Terminology as Topic
Vegetation
Wavelength
Wavelengths
Yield
title Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connecting%20active%20to%20passive%20fluorescence%20with%20photosynthesis:%20a%20method%20for%20evaluating%20remote%20sensing%20measurements%20of%20Chl%20fluorescence&rft.jtitle=The%20New%20phytologist&rft.au=Magney,%20Troy%20S.&rft.date=2017-09-01&rft.volume=215&rft.issue=4&rft.spage=1594&rft.epage=1608&rft.pages=1594-1608&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14662&rft_dat=%3Cjstor_proqu%3E90011681%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925508448&rft_id=info:pmid/28664542&rft_jstor_id=90011681&rfr_iscdi=true