Early identification of MCI converting to AD: a FDG PET study

Purpose Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer’s disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2017-11, Vol.44 (12), p.2042-2052
Hauptverfasser: Pagani, Marco, Nobili, Flavio, Morbelli, Silvia, Arnaldi, Dario, Giuliani, Alessandro, Öberg, Johanna, Girtler, Nicola, Brugnolo, Andrea, Picco, Agnese, Bauckneht, Matteo, Piva, Roberta, Chincarini, Andrea, Sambuceti, Gianmario, Jonsson, Cathrine, De Carli, Fabrizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2052
container_issue 12
container_start_page 2042
container_title European journal of nuclear medicine and molecular imaging
container_volume 44
creator Pagani, Marco
Nobili, Flavio
Morbelli, Silvia
Arnaldi, Dario
Giuliani, Alessandro
Öberg, Johanna
Girtler, Nicola
Brugnolo, Andrea
Picco, Agnese
Bauckneht, Matteo
Piva, Roberta
Chincarini, Andrea
Sambuceti, Gianmario
Jonsson, Cathrine
De Carli, Fabrizio
description Purpose Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer’s disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We assessed the accuracy of FDG PET in discriminating MCI patients who converted to AD from those who did not. Methods FDG PET was performed in 42 NA subjects, 27 MCI patients who had not converted to AD at 5 years (nc-MCI; mean follow-up time 7.5 ± 1.5 years), and 95 MCI patients who converted to AD within 5 years (MCI-AD; mean conversion time 1.8 ± 1.1 years). Relative FDG uptake values in 26 meta-volumes of interest were submitted to ANCOVA and support vector machine analyses to evaluate regional differences and discrimination accuracy. Results The MCI-AD group showed significantly lower FDG uptake values in the temporoparietal cortex than the other two groups. FDG uptake values in the nc-MCI group were similar to those in the NA group. Support vector machine analysis discriminated nc-MCI from MCI-AD patients with an accuracy of 89% (AUC 0.91), correctly detecting 93% of the nc-MCI patients. Conclusion In MCI patients not converting to AD within a minimum follow-up time of 5 years and MCI patients converting within 5 years, baseline FDG PET and volume-based analysis identified those who converted with an accuracy of 89%. However, further analysis is needed in patients with amnestic MCI who convert to a dementia other than AD.
doi_str_mv 10.1007/s00259-017-3761-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1915343220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981653033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-511d5934fa470042f6aa13d5324aad3a4aa7ac5b319e6f4152b4cd7fa312dc263</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoTqc_wBsJeONNNSdfbQUvxr4cTPRiXoesTUbH1s6kle3fm9E5RPAmJ3Ce9014ELoB8gCExI-eECrSiEAcsVhCtD1BFyAhjWKSpKfHe0w66NL7JSGQ0CQ9Rx2aSMm55BfoeajdaoeL3JR1YYtM10VV4sri1_4EZ1X5ZVxdlAtcV7g3eMIajwZj_D6cYV83-e4KnVm98ub6MLvoYzSc9V-i6dt40u9No4yDqCMBkIuUcat5TAinVmoNLBeMcq1zpsMZ60zMGaRG2hChc57lsdUMaJ5Rybrovu3duOqzMb5W68JnZrXSpakaryAFwTijlAT07g-6rBpXht8FKgEpGGEsUNBSmau8d8aqjSvW2u0UELV3q1q3KrhVe7dqGzK3h-Zmvjb5MfEjMwC0BXxYlQvjfj39b-s3if6BTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981653033</pqid></control><display><type>article</type><title>Early identification of MCI converting to AD: a FDG PET study</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Pagani, Marco ; Nobili, Flavio ; Morbelli, Silvia ; Arnaldi, Dario ; Giuliani, Alessandro ; Öberg, Johanna ; Girtler, Nicola ; Brugnolo, Andrea ; Picco, Agnese ; Bauckneht, Matteo ; Piva, Roberta ; Chincarini, Andrea ; Sambuceti, Gianmario ; Jonsson, Cathrine ; De Carli, Fabrizio</creator><creatorcontrib>Pagani, Marco ; Nobili, Flavio ; Morbelli, Silvia ; Arnaldi, Dario ; Giuliani, Alessandro ; Öberg, Johanna ; Girtler, Nicola ; Brugnolo, Andrea ; Picco, Agnese ; Bauckneht, Matteo ; Piva, Roberta ; Chincarini, Andrea ; Sambuceti, Gianmario ; Jonsson, Cathrine ; De Carli, Fabrizio</creatorcontrib><description>Purpose Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer’s disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We assessed the accuracy of FDG PET in discriminating MCI patients who converted to AD from those who did not. Methods FDG PET was performed in 42 NA subjects, 27 MCI patients who had not converted to AD at 5 years (nc-MCI; mean follow-up time 7.5 ± 1.5 years), and 95 MCI patients who converted to AD within 5 years (MCI-AD; mean conversion time 1.8 ± 1.1 years). Relative FDG uptake values in 26 meta-volumes of interest were submitted to ANCOVA and support vector machine analyses to evaluate regional differences and discrimination accuracy. Results The MCI-AD group showed significantly lower FDG uptake values in the temporoparietal cortex than the other two groups. FDG uptake values in the nc-MCI group were similar to those in the NA group. Support vector machine analysis discriminated nc-MCI from MCI-AD patients with an accuracy of 89% (AUC 0.91), correctly detecting 93% of the nc-MCI patients. Conclusion In MCI patients not converting to AD within a minimum follow-up time of 5 years and MCI patients converting within 5 years, baseline FDG PET and volume-based analysis identified those who converted with an accuracy of 89%. However, further analysis is needed in patients with amnestic MCI who convert to a dementia other than AD.</description><identifier>ISSN: 1619-7070</identifier><identifier>EISSN: 1619-7089</identifier><identifier>DOI: 10.1007/s00259-017-3761-x</identifier><identifier>PMID: 28664464</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Alzheimer Disease - complications ; Alzheimer's disease ; Cardiology ; Case-Control Studies ; Cognitive ability ; Cognitive Dysfunction - complications ; Cognitive Dysfunction - diagnostic imaging ; Conversion ; Dementia disorders ; Early Diagnosis ; Female ; Fluorodeoxyglucose F18 ; Humans ; Image Processing, Computer-Assisted ; Imaging ; Male ; Medical diagnosis ; Medicine ; Medicine &amp; Public Health ; Neurodegenerative diseases ; Nuclear Medicine ; Oncology ; Original Article ; Orthopedics ; Patients ; Positron emission tomography ; Radiology ; Regional analysis ; Support Vector Machine ; Tomography</subject><ispartof>European journal of nuclear medicine and molecular imaging, 2017-11, Vol.44 (12), p.2042-2052</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>European Journal of Nuclear Medicine and Molecular Imaging is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-511d5934fa470042f6aa13d5324aad3a4aa7ac5b319e6f4152b4cd7fa312dc263</citedby><cites>FETCH-LOGICAL-c415t-511d5934fa470042f6aa13d5324aad3a4aa7ac5b319e6f4152b4cd7fa312dc263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00259-017-3761-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00259-017-3761-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28664464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pagani, Marco</creatorcontrib><creatorcontrib>Nobili, Flavio</creatorcontrib><creatorcontrib>Morbelli, Silvia</creatorcontrib><creatorcontrib>Arnaldi, Dario</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Öberg, Johanna</creatorcontrib><creatorcontrib>Girtler, Nicola</creatorcontrib><creatorcontrib>Brugnolo, Andrea</creatorcontrib><creatorcontrib>Picco, Agnese</creatorcontrib><creatorcontrib>Bauckneht, Matteo</creatorcontrib><creatorcontrib>Piva, Roberta</creatorcontrib><creatorcontrib>Chincarini, Andrea</creatorcontrib><creatorcontrib>Sambuceti, Gianmario</creatorcontrib><creatorcontrib>Jonsson, Cathrine</creatorcontrib><creatorcontrib>De Carli, Fabrizio</creatorcontrib><title>Early identification of MCI converting to AD: a FDG PET study</title><title>European journal of nuclear medicine and molecular imaging</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>Purpose Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer’s disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We assessed the accuracy of FDG PET in discriminating MCI patients who converted to AD from those who did not. Methods FDG PET was performed in 42 NA subjects, 27 MCI patients who had not converted to AD at 5 years (nc-MCI; mean follow-up time 7.5 ± 1.5 years), and 95 MCI patients who converted to AD within 5 years (MCI-AD; mean conversion time 1.8 ± 1.1 years). Relative FDG uptake values in 26 meta-volumes of interest were submitted to ANCOVA and support vector machine analyses to evaluate regional differences and discrimination accuracy. Results The MCI-AD group showed significantly lower FDG uptake values in the temporoparietal cortex than the other two groups. FDG uptake values in the nc-MCI group were similar to those in the NA group. Support vector machine analysis discriminated nc-MCI from MCI-AD patients with an accuracy of 89% (AUC 0.91), correctly detecting 93% of the nc-MCI patients. Conclusion In MCI patients not converting to AD within a minimum follow-up time of 5 years and MCI patients converting within 5 years, baseline FDG PET and volume-based analysis identified those who converted with an accuracy of 89%. However, further analysis is needed in patients with amnestic MCI who convert to a dementia other than AD.</description><subject>Accuracy</subject><subject>Alzheimer Disease - complications</subject><subject>Alzheimer's disease</subject><subject>Cardiology</subject><subject>Case-Control Studies</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - complications</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Conversion</subject><subject>Dementia disorders</subject><subject>Early Diagnosis</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurodegenerative diseases</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Patients</subject><subject>Positron emission tomography</subject><subject>Radiology</subject><subject>Regional analysis</subject><subject>Support Vector Machine</subject><subject>Tomography</subject><issn>1619-7070</issn><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAUhoMoTqc_wBsJeONNNSdfbQUvxr4cTPRiXoesTUbH1s6kle3fm9E5RPAmJ3Ce9014ELoB8gCExI-eECrSiEAcsVhCtD1BFyAhjWKSpKfHe0w66NL7JSGQ0CQ9Rx2aSMm55BfoeajdaoeL3JR1YYtM10VV4sri1_4EZ1X5ZVxdlAtcV7g3eMIajwZj_D6cYV83-e4KnVm98ub6MLvoYzSc9V-i6dt40u9No4yDqCMBkIuUcat5TAinVmoNLBeMcq1zpsMZ60zMGaRG2hChc57lsdUMaJ5Rybrovu3duOqzMb5W68JnZrXSpakaryAFwTijlAT07g-6rBpXht8FKgEpGGEsUNBSmau8d8aqjSvW2u0UELV3q1q3KrhVe7dqGzK3h-Zmvjb5MfEjMwC0BXxYlQvjfj39b-s3if6BTw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Pagani, Marco</creator><creator>Nobili, Flavio</creator><creator>Morbelli, Silvia</creator><creator>Arnaldi, Dario</creator><creator>Giuliani, Alessandro</creator><creator>Öberg, Johanna</creator><creator>Girtler, Nicola</creator><creator>Brugnolo, Andrea</creator><creator>Picco, Agnese</creator><creator>Bauckneht, Matteo</creator><creator>Piva, Roberta</creator><creator>Chincarini, Andrea</creator><creator>Sambuceti, Gianmario</creator><creator>Jonsson, Cathrine</creator><creator>De Carli, Fabrizio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>Early identification of MCI converting to AD: a FDG PET study</title><author>Pagani, Marco ; Nobili, Flavio ; Morbelli, Silvia ; Arnaldi, Dario ; Giuliani, Alessandro ; Öberg, Johanna ; Girtler, Nicola ; Brugnolo, Andrea ; Picco, Agnese ; Bauckneht, Matteo ; Piva, Roberta ; Chincarini, Andrea ; Sambuceti, Gianmario ; Jonsson, Cathrine ; De Carli, Fabrizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-511d5934fa470042f6aa13d5324aad3a4aa7ac5b319e6f4152b4cd7fa312dc263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Alzheimer Disease - complications</topic><topic>Alzheimer's disease</topic><topic>Cardiology</topic><topic>Case-Control Studies</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - complications</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Conversion</topic><topic>Dementia disorders</topic><topic>Early Diagnosis</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurodegenerative diseases</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Patients</topic><topic>Positron emission tomography</topic><topic>Radiology</topic><topic>Regional analysis</topic><topic>Support Vector Machine</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pagani, Marco</creatorcontrib><creatorcontrib>Nobili, Flavio</creatorcontrib><creatorcontrib>Morbelli, Silvia</creatorcontrib><creatorcontrib>Arnaldi, Dario</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Öberg, Johanna</creatorcontrib><creatorcontrib>Girtler, Nicola</creatorcontrib><creatorcontrib>Brugnolo, Andrea</creatorcontrib><creatorcontrib>Picco, Agnese</creatorcontrib><creatorcontrib>Bauckneht, Matteo</creatorcontrib><creatorcontrib>Piva, Roberta</creatorcontrib><creatorcontrib>Chincarini, Andrea</creatorcontrib><creatorcontrib>Sambuceti, Gianmario</creatorcontrib><creatorcontrib>Jonsson, Cathrine</creatorcontrib><creatorcontrib>De Carli, Fabrizio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of nuclear medicine and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pagani, Marco</au><au>Nobili, Flavio</au><au>Morbelli, Silvia</au><au>Arnaldi, Dario</au><au>Giuliani, Alessandro</au><au>Öberg, Johanna</au><au>Girtler, Nicola</au><au>Brugnolo, Andrea</au><au>Picco, Agnese</au><au>Bauckneht, Matteo</au><au>Piva, Roberta</au><au>Chincarini, Andrea</au><au>Sambuceti, Gianmario</au><au>Jonsson, Cathrine</au><au>De Carli, Fabrizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early identification of MCI converting to AD: a FDG PET study</atitle><jtitle>European journal of nuclear medicine and molecular imaging</jtitle><stitle>Eur J Nucl Med Mol Imaging</stitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>44</volume><issue>12</issue><spage>2042</spage><epage>2052</epage><pages>2042-2052</pages><issn>1619-7070</issn><eissn>1619-7089</eissn><abstract>Purpose Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer’s disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We assessed the accuracy of FDG PET in discriminating MCI patients who converted to AD from those who did not. Methods FDG PET was performed in 42 NA subjects, 27 MCI patients who had not converted to AD at 5 years (nc-MCI; mean follow-up time 7.5 ± 1.5 years), and 95 MCI patients who converted to AD within 5 years (MCI-AD; mean conversion time 1.8 ± 1.1 years). Relative FDG uptake values in 26 meta-volumes of interest were submitted to ANCOVA and support vector machine analyses to evaluate regional differences and discrimination accuracy. Results The MCI-AD group showed significantly lower FDG uptake values in the temporoparietal cortex than the other two groups. FDG uptake values in the nc-MCI group were similar to those in the NA group. Support vector machine analysis discriminated nc-MCI from MCI-AD patients with an accuracy of 89% (AUC 0.91), correctly detecting 93% of the nc-MCI patients. Conclusion In MCI patients not converting to AD within a minimum follow-up time of 5 years and MCI patients converting within 5 years, baseline FDG PET and volume-based analysis identified those who converted with an accuracy of 89%. However, further analysis is needed in patients with amnestic MCI who convert to a dementia other than AD.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28664464</pmid><doi>10.1007/s00259-017-3761-x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1619-7070
ispartof European journal of nuclear medicine and molecular imaging, 2017-11, Vol.44 (12), p.2042-2052
issn 1619-7070
1619-7089
language eng
recordid cdi_proquest_miscellaneous_1915343220
source MEDLINE; Springer Online Journals Complete
subjects Accuracy
Alzheimer Disease - complications
Alzheimer's disease
Cardiology
Case-Control Studies
Cognitive ability
Cognitive Dysfunction - complications
Cognitive Dysfunction - diagnostic imaging
Conversion
Dementia disorders
Early Diagnosis
Female
Fluorodeoxyglucose F18
Humans
Image Processing, Computer-Assisted
Imaging
Male
Medical diagnosis
Medicine
Medicine & Public Health
Neurodegenerative diseases
Nuclear Medicine
Oncology
Original Article
Orthopedics
Patients
Positron emission tomography
Radiology
Regional analysis
Support Vector Machine
Tomography
title Early identification of MCI converting to AD: a FDG PET study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20identification%20of%20MCI%20converting%20to%20AD:%20a%20FDG%20PET%20study&rft.jtitle=European%20journal%20of%20nuclear%20medicine%20and%20molecular%20imaging&rft.au=Pagani,%20Marco&rft.date=2017-11-01&rft.volume=44&rft.issue=12&rft.spage=2042&rft.epage=2052&rft.pages=2042-2052&rft.issn=1619-7070&rft.eissn=1619-7089&rft_id=info:doi/10.1007/s00259-017-3761-x&rft_dat=%3Cproquest_cross%3E1981653033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1981653033&rft_id=info:pmid/28664464&rfr_iscdi=true