An Empirical Study for Human Behavior Analysis

This paper presents an empirical study for human behavior analysis based on three distinct feature extraction techniques: Histograms of Oriented Gradients (HOG), Local Binary Pattern (LBP) and Scale Invariant Local Ternary Pattern (SILTP). The utilised public videos representing spatio-temporal prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of digital crime and forensics 2017-07, Vol.9 (3), p.11-27
Hauptverfasser: Yan, Wei Qi, Lu, Jia, Shen, Jun, Bačić, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an empirical study for human behavior analysis based on three distinct feature extraction techniques: Histograms of Oriented Gradients (HOG), Local Binary Pattern (LBP) and Scale Invariant Local Ternary Pattern (SILTP). The utilised public videos representing spatio-temporal problem area of investigation include INRIA person detection and Weizmann pedestrian activity datasets. For INRIA dataset, both LBP and HOG were able to eliminate redundant video data and show human-intelligible feature visualisation of extracted features required for classification tasks. However, for Weizmann dataset only HOG feature extraction was found to work well with classifying five selected activities/exercises (walking, running, skipping, jumping and jacking).
ISSN:1941-6210
1941-6229
DOI:10.4018/IJDCF.2017070102