The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636−536

Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2015-12, Vol.454 (4), p.3559-3566
Hauptverfasser: Keek, L., Cumming, A., Wolf, Z., Ballantyne, D. R., Suleimanov, V. F., Kuulkers, E., Strohmayer, T. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3566
container_issue 4
container_start_page 3559
container_title Monthly notices of the Royal Astronomical Society
container_volume 454
creator Keek, L.
Cumming, A.
Wolf, Z.
Ballantyne, D. R.
Suleimanov, V. F.
Kuulkers, E.
Strohmayer, T. E.
description Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of the rise of the light curve is set by the slope of the temperature profile left behind by the carbon flame. We analyse Rossi X-ray Timing Explorer/Proportional Counter Array observations of 4U 1636−536 and separate the direct neutron star emission from evolving photoionized reflection and persistent spectral components. This procedure results in the highest quality light curve ever produced for the superburst rise and peak, and interesting behaviour is found in the tail. The rising light curve between 100 and 1000 s is inconsistent with the idea that the fuel burned locally and instantaneously everywhere, as assumed in some previous models. By fitting improved cooling models, we measure for the first time the radial temperature profile of the superbursting layer. We find d ln T/d ln P ≈ 1/4. Furthermore, 20  per cent of the fuel may be left unburned. This gives a new constraint on models of carbon burning and propagation in superbursts.
doi_str_mv 10.1093/mnras/stv2124
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1915325809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv2124</oup_id><sourcerecordid>1906459695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-becdd145e02d444aad8c699d5f5531e66398d189237d73e8a20dd7712273cf4d3</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMoWKtL9wE3bsbmP5OlFP-g4KZdhzTJ6JTOpCYZwTdw7RP4LD6KT2LUguCmcOHexXcv95wDwClGFxgpOun6aNIk5WeCCdsDI0wFr4gSYh-MEKK8qiXGh-AopRVCiFEiRkDPHz1su01s-wxDA62Jy9BDG7rlkHJbxlIGpmHj43KIKcMmhg7msmWsjT63_QPs_ZBj4VI2EbLFxzsWVHy-vnEqjsFBY9bJn2z7GCyur-bT22p2f3M3vZxVliGaq6W3zmHGPSKOMWaMq61QyvGGc4q9EFTVDteKUOkk9bUhyDkpMSGS2oY5Ogbnv3c3MTwNPmXdtcn69dr0PgxJY4U5JbwuPu1GkWBcCcULevYPXYUh9kWIxpIKiUjNZKGqX8rGkFL0jS52dia-aIz0dzL6Jxm9TebvgTBsdqBfZOeQww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736702847</pqid></control><display><type>article</type><title>The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636−536</title><source>Oxford Journals Open Access Collection</source><creator>Keek, L. ; Cumming, A. ; Wolf, Z. ; Ballantyne, D. R. ; Suleimanov, V. F. ; Kuulkers, E. ; Strohmayer, T. E.</creator><creatorcontrib>Keek, L. ; Cumming, A. ; Wolf, Z. ; Ballantyne, D. R. ; Suleimanov, V. F. ; Kuulkers, E. ; Strohmayer, T. E.</creatorcontrib><description>Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of the rise of the light curve is set by the slope of the temperature profile left behind by the carbon flame. We analyse Rossi X-ray Timing Explorer/Proportional Counter Array observations of 4U 1636−536 and separate the direct neutron star emission from evolving photoionized reflection and persistent spectral components. This procedure results in the highest quality light curve ever produced for the superburst rise and peak, and interesting behaviour is found in the tail. The rising light curve between 100 and 1000 s is inconsistent with the idea that the fuel burned locally and instantaneously everywhere, as assumed in some previous models. By fitting improved cooling models, we measure for the first time the radial temperature profile of the superbursting layer. We find d ln T/d ln P ≈ 1/4. Furthermore, 20  per cent of the fuel may be left unburned. This gives a new constraint on models of carbon burning and propagation in superbursts.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv2124</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Accretion ; Carbon ; Combustion ; Fuels ; Light curve ; Neutron stars ; Star &amp; galaxy formation ; Starbursts ; Temperature profiles ; X rays ; X-ray astronomy</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-12, Vol.454 (4), p.3559-3566</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Dec 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-becdd145e02d444aad8c699d5f5531e66398d189237d73e8a20dd7712273cf4d3</citedby><cites>FETCH-LOGICAL-c403t-becdd145e02d444aad8c699d5f5531e66398d189237d73e8a20dd7712273cf4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27922,27923</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv2124$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Keek, L.</creatorcontrib><creatorcontrib>Cumming, A.</creatorcontrib><creatorcontrib>Wolf, Z.</creatorcontrib><creatorcontrib>Ballantyne, D. R.</creatorcontrib><creatorcontrib>Suleimanov, V. F.</creatorcontrib><creatorcontrib>Kuulkers, E.</creatorcontrib><creatorcontrib>Strohmayer, T. E.</creatorcontrib><title>The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636−536</title><title>Monthly notices of the Royal Astronomical Society</title><description>Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of the rise of the light curve is set by the slope of the temperature profile left behind by the carbon flame. We analyse Rossi X-ray Timing Explorer/Proportional Counter Array observations of 4U 1636−536 and separate the direct neutron star emission from evolving photoionized reflection and persistent spectral components. This procedure results in the highest quality light curve ever produced for the superburst rise and peak, and interesting behaviour is found in the tail. The rising light curve between 100 and 1000 s is inconsistent with the idea that the fuel burned locally and instantaneously everywhere, as assumed in some previous models. By fitting improved cooling models, we measure for the first time the radial temperature profile of the superbursting layer. We find d ln T/d ln P ≈ 1/4. Furthermore, 20  per cent of the fuel may be left unburned. This gives a new constraint on models of carbon burning and propagation in superbursts.</description><subject>Accretion</subject><subject>Carbon</subject><subject>Combustion</subject><subject>Fuels</subject><subject>Light curve</subject><subject>Neutron stars</subject><subject>Star &amp; galaxy formation</subject><subject>Starbursts</subject><subject>Temperature profiles</subject><subject>X rays</subject><subject>X-ray astronomy</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KAzEUhYMoWKtL9wE3bsbmP5OlFP-g4KZdhzTJ6JTOpCYZwTdw7RP4LD6KT2LUguCmcOHexXcv95wDwClGFxgpOun6aNIk5WeCCdsDI0wFr4gSYh-MEKK8qiXGh-AopRVCiFEiRkDPHz1su01s-wxDA62Jy9BDG7rlkHJbxlIGpmHj43KIKcMmhg7msmWsjT63_QPs_ZBj4VI2EbLFxzsWVHy-vnEqjsFBY9bJn2z7GCyur-bT22p2f3M3vZxVliGaq6W3zmHGPSKOMWaMq61QyvGGc4q9EFTVDteKUOkk9bUhyDkpMSGS2oY5Ogbnv3c3MTwNPmXdtcn69dr0PgxJY4U5JbwuPu1GkWBcCcULevYPXYUh9kWIxpIKiUjNZKGqX8rGkFL0jS52dia-aIz0dzL6Jxm9TebvgTBsdqBfZOeQww</recordid><startdate>20151221</startdate><enddate>20151221</enddate><creator>Keek, L.</creator><creator>Cumming, A.</creator><creator>Wolf, Z.</creator><creator>Ballantyne, D. R.</creator><creator>Suleimanov, V. F.</creator><creator>Kuulkers, E.</creator><creator>Strohmayer, T. E.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20151221</creationdate><title>The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636−536</title><author>Keek, L. ; Cumming, A. ; Wolf, Z. ; Ballantyne, D. R. ; Suleimanov, V. F. ; Kuulkers, E. ; Strohmayer, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-becdd145e02d444aad8c699d5f5531e66398d189237d73e8a20dd7712273cf4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accretion</topic><topic>Carbon</topic><topic>Combustion</topic><topic>Fuels</topic><topic>Light curve</topic><topic>Neutron stars</topic><topic>Star &amp; galaxy formation</topic><topic>Starbursts</topic><topic>Temperature profiles</topic><topic>X rays</topic><topic>X-ray astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keek, L.</creatorcontrib><creatorcontrib>Cumming, A.</creatorcontrib><creatorcontrib>Wolf, Z.</creatorcontrib><creatorcontrib>Ballantyne, D. R.</creatorcontrib><creatorcontrib>Suleimanov, V. F.</creatorcontrib><creatorcontrib>Kuulkers, E.</creatorcontrib><creatorcontrib>Strohmayer, T. E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keek, L.</au><au>Cumming, A.</au><au>Wolf, Z.</au><au>Ballantyne, D. R.</au><au>Suleimanov, V. F.</au><au>Kuulkers, E.</au><au>Strohmayer, T. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636−536</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2015-12-21</date><risdate>2015</risdate><volume>454</volume><issue>4</issue><spage>3559</spage><epage>3566</epage><pages>3559-3566</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of the rise of the light curve is set by the slope of the temperature profile left behind by the carbon flame. We analyse Rossi X-ray Timing Explorer/Proportional Counter Array observations of 4U 1636−536 and separate the direct neutron star emission from evolving photoionized reflection and persistent spectral components. This procedure results in the highest quality light curve ever produced for the superburst rise and peak, and interesting behaviour is found in the tail. The rising light curve between 100 and 1000 s is inconsistent with the idea that the fuel burned locally and instantaneously everywhere, as assumed in some previous models. By fitting improved cooling models, we measure for the first time the radial temperature profile of the superbursting layer. We find d ln T/d ln P ≈ 1/4. Furthermore, 20  per cent of the fuel may be left unburned. This gives a new constraint on models of carbon burning and propagation in superbursts.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv2124</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-12, Vol.454 (4), p.3559-3566
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1915325809
source Oxford Journals Open Access Collection
subjects Accretion
Carbon
Combustion
Fuels
Light curve
Neutron stars
Star & galaxy formation
Starbursts
Temperature profiles
X rays
X-ray astronomy
title The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636−536
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20imprint%20of%20carbon%20combustion%20on%20a%20superburst%20from%20the%20accreting%20neutron%20star%204U%C2%A01636%E2%88%92536&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Keek,%20L.&rft.date=2015-12-21&rft.volume=454&rft.issue=4&rft.spage=3559&rft.epage=3566&rft.pages=3559-3566&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv2124&rft_dat=%3Cproquest_TOX%3E1906459695%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736702847&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv2124&rfr_iscdi=true