A glycosylation strategy to develop a low toxic naphthalimide fluorescent probe for the detection of Fe3+ in aqueous medium
A glycosylation strategy based on click chemistry was employed to develop a naphthalimide-based Fe3+ fluorescent probe with low cytotoxicity and good water-solubility. The selectivity and sensitivity to Fe3+ of three synthesized naphthalimide-based fluorescent probes follows a Nap-PZ < Nap-OH <...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2017-06, Vol.46 (23), p.7515-7522 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A glycosylation strategy based on click chemistry was employed to develop a naphthalimide-based Fe3+ fluorescent probe with low cytotoxicity and good water-solubility. The selectivity and sensitivity to Fe3+ of three synthesized naphthalimide-based fluorescent probes follows a Nap-PZ < Nap-OH < Nap-Glc trend, because Nap-PZ was modified with a good water-soluble group. The cytotoxicity follows a Nap-PZ > Nap-OH > Nap-Glc trend, because the exposed toxic group of Nap-PZ was shielded by a good biocompatible group. The detection limit toward Fe3+ ion follows a Nap-PZ (7.40 10-6 M) > Nap-OH (2.73 10-7 M) > Nap-Glc (4.27 10-8 M) trend. Moreover, Nap-Glc could be used to detect Fe3+ in living cells. The fluorescent "off-on" response of Nap-Glc towards Fe3+ could be recognized by the naked eye, and the "off-on" fluorescent mechanism also was demonstrated by theoretical calculations. Therefore, Nap-Glc is a novel glucosyl naphthalimide fluorescent probe for environmental or biological detection of Fe3+ with low cytotoxicity and good water-solubility. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c7dt01099k |