Probabilistic Analyses of Slopes and Footings with Spatially Variable Soils Considering Cross-Correlation and Conditioned Random Field

AbstractThis paper presents probabilistic analyses of slopes and strip footings, with spatially variable soil modeled by the random field theory. Random fields are simulated using Latin hypercube sampling with dependence (LHSD), which is a stratified sampling technique that preserves the spatial aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geotechnical and geoenvironmental engineering 2017-09, Vol.143 (9)
Hauptverfasser: Lo, M. K, Leung, Y. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of geotechnical and geoenvironmental engineering
container_volume 143
creator Lo, M. K
Leung, Y. F
description AbstractThis paper presents probabilistic analyses of slopes and strip footings, with spatially variable soil modeled by the random field theory. Random fields are simulated using Latin hypercube sampling with dependence (LHSD), which is a stratified sampling technique that preserves the spatial autocorrelation characteristics. Latin hypercube sampling with dependence is coupled with polynomial chaos expansion (PCE) to approximate the probability density function of model response. The LHSD-PCE approach is applied to probabilistic slope analyses for soils with cross-correlated shear strength parameters, and is shown to be more robust than raw Monte Carlo simulations, even with much smaller numbers of model simulations. The approach is then applied to strip footing analyses with conditioned random fields of Young’s modulus and shear strength parameters, to quantify the reductions in settlement uncertainty when soil samples are available at different depths underneath the footing. The most influential sampling depth is found to vary between 0.25 and 1 times the footing width, depending on the strength mobilization and spatial correlation features. Design charts are established with practical guidelines for quick estimations of uncertainty in footing settlements.
doi_str_mv 10.1061/(ASCE)GT.1943-5606.0001720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1915324540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915324540</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-90ff98687367d5fb09c1192aec6e9c5f374981d25a013a9d2fb0e070e95b5a0a3</originalsourceid><addsrcrecordid>eNqNkV1LwzAUhosoOKf_IXg1LzpP0vQj3o3ipjBQ7PQ2pG2qGVlTkw7ZH_B3m7qxO8GrnLw874HkCYJrDFMMCb6dzIr8_maxmmJGozBOIJkCAE4JnASjY3bqZ2AQAqH4PLhwbu0hChkZBd_P1pSiVFq5XlVo1gq9c9Ih06BCm85Poq3R3Jhete8Ofan-AxWd6JXQeofehFWi1BIVRmmHctM6VUvrUZRb41yYG2ul9rhpfxd5olbDTdboxQdmg-ZK6voyOGuEdvLqcI6D1_n9Kn8Il0-Lx3y2DAUlSR8yaBqWJVkaJWkdNyWwCmNGhKwSyaq4iVLKMlyTWACOBKuJRySkIFlc-kxE42Cy39tZ87mVrucb5SqptWil2TqOGY4jQmMK_0D9P1NCotSjd3u0Gh5tZcM7qzbC7jgGPnjifPDEFys-OOGDE37w5MvJviz8dr42W-sduGPz7-IPvyKYlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901742237</pqid></control><display><type>article</type><title>Probabilistic Analyses of Slopes and Footings with Spatially Variable Soils Considering Cross-Correlation and Conditioned Random Field</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Lo, M. K ; Leung, Y. F</creator><creatorcontrib>Lo, M. K ; Leung, Y. F</creatorcontrib><description>AbstractThis paper presents probabilistic analyses of slopes and strip footings, with spatially variable soil modeled by the random field theory. Random fields are simulated using Latin hypercube sampling with dependence (LHSD), which is a stratified sampling technique that preserves the spatial autocorrelation characteristics. Latin hypercube sampling with dependence is coupled with polynomial chaos expansion (PCE) to approximate the probability density function of model response. The LHSD-PCE approach is applied to probabilistic slope analyses for soils with cross-correlated shear strength parameters, and is shown to be more robust than raw Monte Carlo simulations, even with much smaller numbers of model simulations. The approach is then applied to strip footing analyses with conditioned random fields of Young’s modulus and shear strength parameters, to quantify the reductions in settlement uncertainty when soil samples are available at different depths underneath the footing. The most influential sampling depth is found to vary between 0.25 and 1 times the footing width, depending on the strength mobilization and spatial correlation features. Design charts are established with practical guidelines for quick estimations of uncertainty in footing settlements.</description><identifier>ISSN: 1090-0241</identifier><identifier>EISSN: 1943-5606</identifier><identifier>DOI: 10.1061/(ASCE)GT.1943-5606.0001720</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Computer simulation ; Fields (mathematics) ; Mathematical models ; Parameters ; Shear strength ; Slopes ; Soil (material) ; Strip ; Technical Papers</subject><ispartof>Journal of geotechnical and geoenvironmental engineering, 2017-09, Vol.143 (9)</ispartof><rights>2017 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-90ff98687367d5fb09c1192aec6e9c5f374981d25a013a9d2fb0e070e95b5a0a3</citedby><cites>FETCH-LOGICAL-a426t-90ff98687367d5fb09c1192aec6e9c5f374981d25a013a9d2fb0e070e95b5a0a3</cites><orcidid>0000-0002-5995-4218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)GT.1943-5606.0001720$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)GT.1943-5606.0001720$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids></links><search><creatorcontrib>Lo, M. K</creatorcontrib><creatorcontrib>Leung, Y. F</creatorcontrib><title>Probabilistic Analyses of Slopes and Footings with Spatially Variable Soils Considering Cross-Correlation and Conditioned Random Field</title><title>Journal of geotechnical and geoenvironmental engineering</title><description>AbstractThis paper presents probabilistic analyses of slopes and strip footings, with spatially variable soil modeled by the random field theory. Random fields are simulated using Latin hypercube sampling with dependence (LHSD), which is a stratified sampling technique that preserves the spatial autocorrelation characteristics. Latin hypercube sampling with dependence is coupled with polynomial chaos expansion (PCE) to approximate the probability density function of model response. The LHSD-PCE approach is applied to probabilistic slope analyses for soils with cross-correlated shear strength parameters, and is shown to be more robust than raw Monte Carlo simulations, even with much smaller numbers of model simulations. The approach is then applied to strip footing analyses with conditioned random fields of Young’s modulus and shear strength parameters, to quantify the reductions in settlement uncertainty when soil samples are available at different depths underneath the footing. The most influential sampling depth is found to vary between 0.25 and 1 times the footing width, depending on the strength mobilization and spatial correlation features. Design charts are established with practical guidelines for quick estimations of uncertainty in footing settlements.</description><subject>Computer simulation</subject><subject>Fields (mathematics)</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Shear strength</subject><subject>Slopes</subject><subject>Soil (material)</subject><subject>Strip</subject><subject>Technical Papers</subject><issn>1090-0241</issn><issn>1943-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkV1LwzAUhosoOKf_IXg1LzpP0vQj3o3ipjBQ7PQ2pG2qGVlTkw7ZH_B3m7qxO8GrnLw874HkCYJrDFMMCb6dzIr8_maxmmJGozBOIJkCAE4JnASjY3bqZ2AQAqH4PLhwbu0hChkZBd_P1pSiVFq5XlVo1gq9c9Ih06BCm85Poq3R3Jhete8Ofan-AxWd6JXQeofehFWi1BIVRmmHctM6VUvrUZRb41yYG2ul9rhpfxd5olbDTdboxQdmg-ZK6voyOGuEdvLqcI6D1_n9Kn8Il0-Lx3y2DAUlSR8yaBqWJVkaJWkdNyWwCmNGhKwSyaq4iVLKMlyTWACOBKuJRySkIFlc-kxE42Cy39tZ87mVrucb5SqptWil2TqOGY4jQmMK_0D9P1NCotSjd3u0Gh5tZcM7qzbC7jgGPnjifPDEFys-OOGDE37w5MvJviz8dr42W-sduGPz7-IPvyKYlg</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Lo, M. K</creator><creator>Leung, Y. F</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5995-4218</orcidid></search><sort><creationdate>20170901</creationdate><title>Probabilistic Analyses of Slopes and Footings with Spatially Variable Soils Considering Cross-Correlation and Conditioned Random Field</title><author>Lo, M. K ; Leung, Y. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-90ff98687367d5fb09c1192aec6e9c5f374981d25a013a9d2fb0e070e95b5a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Fields (mathematics)</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Shear strength</topic><topic>Slopes</topic><topic>Soil (material)</topic><topic>Strip</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, M. K</creatorcontrib><creatorcontrib>Leung, Y. F</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, M. K</au><au>Leung, Y. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Analyses of Slopes and Footings with Spatially Variable Soils Considering Cross-Correlation and Conditioned Random Field</atitle><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>143</volume><issue>9</issue><issn>1090-0241</issn><eissn>1943-5606</eissn><abstract>AbstractThis paper presents probabilistic analyses of slopes and strip footings, with spatially variable soil modeled by the random field theory. Random fields are simulated using Latin hypercube sampling with dependence (LHSD), which is a stratified sampling technique that preserves the spatial autocorrelation characteristics. Latin hypercube sampling with dependence is coupled with polynomial chaos expansion (PCE) to approximate the probability density function of model response. The LHSD-PCE approach is applied to probabilistic slope analyses for soils with cross-correlated shear strength parameters, and is shown to be more robust than raw Monte Carlo simulations, even with much smaller numbers of model simulations. The approach is then applied to strip footing analyses with conditioned random fields of Young’s modulus and shear strength parameters, to quantify the reductions in settlement uncertainty when soil samples are available at different depths underneath the footing. The most influential sampling depth is found to vary between 0.25 and 1 times the footing width, depending on the strength mobilization and spatial correlation features. Design charts are established with practical guidelines for quick estimations of uncertainty in footing settlements.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)GT.1943-5606.0001720</doi><orcidid>https://orcid.org/0000-0002-5995-4218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1090-0241
ispartof Journal of geotechnical and geoenvironmental engineering, 2017-09, Vol.143 (9)
issn 1090-0241
1943-5606
language eng
recordid cdi_proquest_miscellaneous_1915324540
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Computer simulation
Fields (mathematics)
Mathematical models
Parameters
Shear strength
Slopes
Soil (material)
Strip
Technical Papers
title Probabilistic Analyses of Slopes and Footings with Spatially Variable Soils Considering Cross-Correlation and Conditioned Random Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Analyses%20of%20Slopes%20and%20Footings%20with%20Spatially%20Variable%20Soils%20Considering%20Cross-Correlation%20and%20Conditioned%20Random%20Field&rft.jtitle=Journal%20of%20geotechnical%20and%20geoenvironmental%20engineering&rft.au=Lo,%20M.%20K&rft.date=2017-09-01&rft.volume=143&rft.issue=9&rft.issn=1090-0241&rft.eissn=1943-5606&rft_id=info:doi/10.1061/(ASCE)GT.1943-5606.0001720&rft_dat=%3Cproquest_cross%3E1915324540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901742237&rft_id=info:pmid/&rfr_iscdi=true