Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation

Shape is an important passive marker in label-free particle and cell separation for chemical, biomedical, and environmental applications. We demonstrate herein a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume (or equivalent spherical diameter) v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-11, Vol.87 (22), p.11523-11530
Hauptverfasser: Lu, Xinyu, Xuan, Xiangchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11530
container_issue 22
container_start_page 11523
container_title Analytical chemistry (Washington)
container_volume 87
creator Lu, Xinyu
Xuan, Xiangchun
description Shape is an important passive marker in label-free particle and cell separation for chemical, biomedical, and environmental applications. We demonstrate herein a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume (or equivalent spherical diameter) via elasto-inertial pinched flow fractionation (eiPFF). This microfluidic technique exploits the shape dependence of the flow-induced elasto-inertial lift (and hence the cross-stream migration) in viscoelastic fluids to increase the displacement of a sheath flow-focused particle mixture for a high-purity separation. The parametric effects on this shape-based particle separation via eiPFF are systematically investigated in terms of five dimensionless numbers. It is found that the separation is strongly affected by the flow rate, fluid elasticity, and channel aspect ratio. Interestingly, the elasto-inertial deflection of the peanut particles can be either greater or smaller than that of equally volumed spherical particles. This phenomenon is speculated to correlate with the rotational effects of peanut particles.
doi_str_mv 10.1021/acs.analchem.5b03321
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1915323017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1734283675</sourcerecordid><originalsourceid>FETCH-LOGICAL-a545t-cdecbe6517d3fc6b1fccccd88afa4fcae2098d44534dee8527081ec2b85253533</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhq2qFWwp_6CqIvXCJdsZfyTeI12xLRJSkYBDT9HEmYigbLzYiRD_Hi-7FKkHWh9sH5739ViPEJ8R5ggSv5GLcxqod7e8npsalJL4TszQSMgLa-V7MQMAlcsS4FB8jPEOABGwOBCHsjBgENVM_D7rKY4-Px84jB312WU3pMYmW_X-IVsFcmPnB9puWetDtvTD2A2Tn2J2dUsbzr9TTPQlpbTrObviDYVn_JP40FIf-Xh_Homb1dn18md-8evH-fL0IiejzZi7hl3NhcGyUa0ramxdWo211JJuHbGEhW20Nko3zNak71hkJ-t0NcoodSROdr2b4O8njmO17qLjvqeB05gVLtAoqQDL_0Ch0AVo1P9GS6WlVUVpEvr1L_TOTyGZeaZMaXBht2PqHeWCjzFwW21Ct6bwWCFUW6FVElq9CK32QlPsy758qtfc_Am9GEwA7IBt_PXhtzqfAE6Qruc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735751983</pqid></control><display><type>article</type><title>Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lu, Xinyu ; Xuan, Xiangchun</creator><creatorcontrib>Lu, Xinyu ; Xuan, Xiangchun</creatorcontrib><description>Shape is an important passive marker in label-free particle and cell separation for chemical, biomedical, and environmental applications. We demonstrate herein a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume (or equivalent spherical diameter) via elasto-inertial pinched flow fractionation (eiPFF). This microfluidic technique exploits the shape dependence of the flow-induced elasto-inertial lift (and hence the cross-stream migration) in viscoelastic fluids to increase the displacement of a sheath flow-focused particle mixture for a high-purity separation. The parametric effects on this shape-based particle separation via eiPFF are systematically investigated in terms of five dimensionless numbers. It is found that the separation is strongly affected by the flow rate, fluid elasticity, and channel aspect ratio. Interestingly, the elasto-inertial deflection of the peanut particles can be either greater or smaller than that of equally volumed spherical particles. This phenomenon is speculated to correlate with the rotational effects of peanut particles.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b03321</identifier><identifier>PMID: 26505113</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Arachis hypogaea ; Channels ; Chemical Fractionation - methods ; Deflection ; Elasticity ; Fractionation ; Microfluidic Analytical Techniques ; Microfluidics ; Nanoparticles ; Particle Size ; Particulate Matter - chemistry ; Particulate Matter - isolation &amp; purification ; Peanuts ; Separation ; Sheaths ; Surface Properties ; Viscoelasticity</subject><ispartof>Analytical chemistry (Washington), 2015-11, Vol.87 (22), p.11523-11530</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 17, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a545t-cdecbe6517d3fc6b1fccccd88afa4fcae2098d44534dee8527081ec2b85253533</citedby><cites>FETCH-LOGICAL-a545t-cdecbe6517d3fc6b1fccccd88afa4fcae2098d44534dee8527081ec2b85253533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b03321$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b03321$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26505113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Xuan, Xiangchun</creatorcontrib><title>Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Shape is an important passive marker in label-free particle and cell separation for chemical, biomedical, and environmental applications. We demonstrate herein a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume (or equivalent spherical diameter) via elasto-inertial pinched flow fractionation (eiPFF). This microfluidic technique exploits the shape dependence of the flow-induced elasto-inertial lift (and hence the cross-stream migration) in viscoelastic fluids to increase the displacement of a sheath flow-focused particle mixture for a high-purity separation. The parametric effects on this shape-based particle separation via eiPFF are systematically investigated in terms of five dimensionless numbers. It is found that the separation is strongly affected by the flow rate, fluid elasticity, and channel aspect ratio. Interestingly, the elasto-inertial deflection of the peanut particles can be either greater or smaller than that of equally volumed spherical particles. This phenomenon is speculated to correlate with the rotational effects of peanut particles.</description><subject>Analytical chemistry</subject><subject>Arachis hypogaea</subject><subject>Channels</subject><subject>Chemical Fractionation - methods</subject><subject>Deflection</subject><subject>Elasticity</subject><subject>Fractionation</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Particulate Matter - chemistry</subject><subject>Particulate Matter - isolation &amp; purification</subject><subject>Peanuts</subject><subject>Separation</subject><subject>Sheaths</subject><subject>Surface Properties</subject><subject>Viscoelasticity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhq2qFWwp_6CqIvXCJdsZfyTeI12xLRJSkYBDT9HEmYigbLzYiRD_Hi-7FKkHWh9sH5739ViPEJ8R5ggSv5GLcxqod7e8npsalJL4TszQSMgLa-V7MQMAlcsS4FB8jPEOABGwOBCHsjBgENVM_D7rKY4-Px84jB312WU3pMYmW_X-IVsFcmPnB9puWetDtvTD2A2Tn2J2dUsbzr9TTPQlpbTrObviDYVn_JP40FIf-Xh_Homb1dn18md-8evH-fL0IiejzZi7hl3NhcGyUa0ramxdWo211JJuHbGEhW20Nko3zNak71hkJ-t0NcoodSROdr2b4O8njmO17qLjvqeB05gVLtAoqQDL_0Ch0AVo1P9GS6WlVUVpEvr1L_TOTyGZeaZMaXBht2PqHeWCjzFwW21Ct6bwWCFUW6FVElq9CK32QlPsy758qtfc_Am9GEwA7IBt_PXhtzqfAE6Qruc</recordid><startdate>20151117</startdate><enddate>20151117</enddate><creator>Lu, Xinyu</creator><creator>Xuan, Xiangchun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20151117</creationdate><title>Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation</title><author>Lu, Xinyu ; Xuan, Xiangchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a545t-cdecbe6517d3fc6b1fccccd88afa4fcae2098d44534dee8527081ec2b85253533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analytical chemistry</topic><topic>Arachis hypogaea</topic><topic>Channels</topic><topic>Chemical Fractionation - methods</topic><topic>Deflection</topic><topic>Elasticity</topic><topic>Fractionation</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Particulate Matter - chemistry</topic><topic>Particulate Matter - isolation &amp; purification</topic><topic>Peanuts</topic><topic>Separation</topic><topic>Sheaths</topic><topic>Surface Properties</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Xuan, Xiangchun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xinyu</au><au>Xuan, Xiangchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-11-17</date><risdate>2015</risdate><volume>87</volume><issue>22</issue><spage>11523</spage><epage>11530</epage><pages>11523-11530</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Shape is an important passive marker in label-free particle and cell separation for chemical, biomedical, and environmental applications. We demonstrate herein a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume (or equivalent spherical diameter) via elasto-inertial pinched flow fractionation (eiPFF). This microfluidic technique exploits the shape dependence of the flow-induced elasto-inertial lift (and hence the cross-stream migration) in viscoelastic fluids to increase the displacement of a sheath flow-focused particle mixture for a high-purity separation. The parametric effects on this shape-based particle separation via eiPFF are systematically investigated in terms of five dimensionless numbers. It is found that the separation is strongly affected by the flow rate, fluid elasticity, and channel aspect ratio. Interestingly, the elasto-inertial deflection of the peanut particles can be either greater or smaller than that of equally volumed spherical particles. This phenomenon is speculated to correlate with the rotational effects of peanut particles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26505113</pmid><doi>10.1021/acs.analchem.5b03321</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-11, Vol.87 (22), p.11523-11530
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1915323017
source MEDLINE; ACS Publications
subjects Analytical chemistry
Arachis hypogaea
Channels
Chemical Fractionation - methods
Deflection
Elasticity
Fractionation
Microfluidic Analytical Techniques
Microfluidics
Nanoparticles
Particle Size
Particulate Matter - chemistry
Particulate Matter - isolation & purification
Peanuts
Separation
Sheaths
Surface Properties
Viscoelasticity
title Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elasto-Inertial%20Pinched%20Flow%20Fractionation%20for%20Continuous%20Shape-Based%20Particle%20Separation&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lu,%20Xinyu&rft.date=2015-11-17&rft.volume=87&rft.issue=22&rft.spage=11523&rft.epage=11530&rft.pages=11523-11530&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b03321&rft_dat=%3Cproquest_cross%3E1734283675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735751983&rft_id=info:pmid/26505113&rfr_iscdi=true