Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second‐Degree Scald

How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF‐LIP) is successfully developed by the common liposomal template, followed by gelation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2017-10, Vol.6 (19), p.n/a
Hauptverfasser: Xu, He‐Lin, Chen, Pian‐Pian, ZhuGe, De‐Li, Zhu, Qun‐Yan, Jin, Bing‐Hui, Shen, Bi‐Xin, Xiao, Jian, Zhao, Ying‐Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced healthcare materials
container_volume 6
creator Xu, He‐Lin
Chen, Pian‐Pian
ZhuGe, De‐Li
Zhu, Qun‐Yan
Jin, Bing‐Hui
Shen, Bi‐Xin
Xiao, Jian
Zhao, Ying‐Zheng
description How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF‐LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF‐LIP is capable of encapsulating bFGF (SF‐bFGF‐LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of −9.41 ± 0.10 mV. SF‐LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF‐LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF‐bFGF‐LIP are still preserved but these are severely compromised for the conventional bFGF‐liposome (bFGF‐LIP). In vivo experiments reveal that SF‐bFGF‐LIP accelerates the wound closure of mice with deep second‐degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF‐bFGF‐LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF‐LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing. Maintaining the stability of basic fibroblast growth factor (bFGF) in wound fluids is important to accelerate wound healing. In this study, a novel liposome (LIP) with silk fibroin (SF) hydrogel core has been proposed as an innovative carrier of bFGF for deep second‐degree scald. Due to the protective effect and enhanced penetration ability, SF‐bFGF‐LIP exhibits a better wound healing effect than free bFGF or the common bFGF‐liposome.
doi_str_mv 10.1002/adhm.201700344
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1914849271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949506115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4104-effd58fbbb4b2a66f9bb6ecb872837824c412e80b492d21d4d62905aac73a6003</originalsourceid><addsrcrecordid>eNqFkcFOGzEQhi1UBAi4ckSWuPSSYDte7-4xSkhSKQikFHFc2evZxKl3HexdRempfYM-Y58Eo0AqcakvY3m--TTyj9AVJX1KCLuVelX3GaEpIQPOj9AZoznrMZHkXw53Tk7RZQhrEo9IqMjoCTplmRCUJOQM_Z6bjQuuhoC3pl3hhbE_8MQo70yDZzvt3RIsHjkPuHV40UplrPkJWE2mEywbjR-9q10buyvAz66LLzOQ1jRL7Cp8b0rYe8cAG7yA0jX6768_Y1h6ALwopdUX6LiSNsDlez1HT5O776NZb_4w_TYaznslp4T3oKp0klVKKa6YFKLKlRJQqixl2SDNGI8Yg4wonjPNqOZasJwkUpbpQIr4Qefo69678e6lg9AWtQklWCsbcF0oaE55FodTGtGbT-jadb6J20WK5wkRlCaR6u-p0rsQPFTFxpta-l1BSfGWT_GWT3HIJw5cv2s7VYM-4B9pRCDfA1tjYfcfXTEcz-7_yV8BxPib9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949506115</pqid></control><display><type>article</type><title>Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second‐Degree Scald</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Xu, He‐Lin ; Chen, Pian‐Pian ; ZhuGe, De‐Li ; Zhu, Qun‐Yan ; Jin, Bing‐Hui ; Shen, Bi‐Xin ; Xiao, Jian ; Zhao, Ying‐Zheng</creator><creatorcontrib>Xu, He‐Lin ; Chen, Pian‐Pian ; ZhuGe, De‐Li ; Zhu, Qun‐Yan ; Jin, Bing‐Hui ; Shen, Bi‐Xin ; Xiao, Jian ; Zhao, Ying‐Zheng</creatorcontrib><description>How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF‐LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF‐LIP is capable of encapsulating bFGF (SF‐bFGF‐LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of −9.41 ± 0.10 mV. SF‐LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF‐LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF‐bFGF‐LIP are still preserved but these are severely compromised for the conventional bFGF‐liposome (bFGF‐LIP). In vivo experiments reveal that SF‐bFGF‐LIP accelerates the wound closure of mice with deep second‐degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF‐bFGF‐LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF‐LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing. Maintaining the stability of basic fibroblast growth factor (bFGF) in wound fluids is important to accelerate wound healing. In this study, a novel liposome (LIP) with silk fibroin (SF) hydrogel core has been proposed as an innovative carrier of bFGF for deep second‐degree scald. Due to the protective effect and enhanced penetration ability, SF‐bFGF‐LIP exhibits a better wound healing effect than free bFGF or the common bFGF‐liposome.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201700344</identifier><identifier>PMID: 28661050</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; bFGF ; Burns - drug therapy ; Burns - pathology ; Cell proliferation ; deep second‐degree scalds ; Diffusion ; Drug Compounding - methods ; Drug Stability ; Encapsulation ; Fibroblast growth factor 2 ; Fibroblast Growth Factor 2 - administration &amp; dosage ; Fibroblast Growth Factor 2 - chemistry ; Fibroins - chemistry ; Fluids ; Gelation ; Growth factors ; hydrogel cores ; Hydrogels ; Hydrogels - chemistry ; Liposomes ; Liposomes - chemistry ; Mice ; Mice, Inbred C57BL ; Nanocapsules - chemistry ; Nanocapsules - ultrastructure ; Particle Size ; Regeneration ; Scald ; Silk ; Silk fibroin ; Sonication ; Stability ; Treatment Outcome ; Wound Closure Techniques ; Wound healing ; Wound Healing - drug effects ; Zeta potential</subject><ispartof>Advanced healthcare materials, 2017-10, Vol.6 (19), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4104-effd58fbbb4b2a66f9bb6ecb872837824c412e80b492d21d4d62905aac73a6003</citedby><cites>FETCH-LOGICAL-c4104-effd58fbbb4b2a66f9bb6ecb872837824c412e80b492d21d4d62905aac73a6003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201700344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201700344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28661050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, He‐Lin</creatorcontrib><creatorcontrib>Chen, Pian‐Pian</creatorcontrib><creatorcontrib>ZhuGe, De‐Li</creatorcontrib><creatorcontrib>Zhu, Qun‐Yan</creatorcontrib><creatorcontrib>Jin, Bing‐Hui</creatorcontrib><creatorcontrib>Shen, Bi‐Xin</creatorcontrib><creatorcontrib>Xiao, Jian</creatorcontrib><creatorcontrib>Zhao, Ying‐Zheng</creatorcontrib><title>Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second‐Degree Scald</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF‐LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF‐LIP is capable of encapsulating bFGF (SF‐bFGF‐LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of −9.41 ± 0.10 mV. SF‐LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF‐LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF‐bFGF‐LIP are still preserved but these are severely compromised for the conventional bFGF‐liposome (bFGF‐LIP). In vivo experiments reveal that SF‐bFGF‐LIP accelerates the wound closure of mice with deep second‐degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF‐bFGF‐LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF‐LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing. Maintaining the stability of basic fibroblast growth factor (bFGF) in wound fluids is important to accelerate wound healing. In this study, a novel liposome (LIP) with silk fibroin (SF) hydrogel core has been proposed as an innovative carrier of bFGF for deep second‐degree scald. Due to the protective effect and enhanced penetration ability, SF‐bFGF‐LIP exhibits a better wound healing effect than free bFGF or the common bFGF‐liposome.</description><subject>Animals</subject><subject>bFGF</subject><subject>Burns - drug therapy</subject><subject>Burns - pathology</subject><subject>Cell proliferation</subject><subject>deep second‐degree scalds</subject><subject>Diffusion</subject><subject>Drug Compounding - methods</subject><subject>Drug Stability</subject><subject>Encapsulation</subject><subject>Fibroblast growth factor 2</subject><subject>Fibroblast Growth Factor 2 - administration &amp; dosage</subject><subject>Fibroblast Growth Factor 2 - chemistry</subject><subject>Fibroins - chemistry</subject><subject>Fluids</subject><subject>Gelation</subject><subject>Growth factors</subject><subject>hydrogel cores</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Liposomes</subject><subject>Liposomes - chemistry</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - ultrastructure</subject><subject>Particle Size</subject><subject>Regeneration</subject><subject>Scald</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Sonication</subject><subject>Stability</subject><subject>Treatment Outcome</subject><subject>Wound Closure Techniques</subject><subject>Wound healing</subject><subject>Wound Healing - drug effects</subject><subject>Zeta potential</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFOGzEQhi1UBAi4ckSWuPSSYDte7-4xSkhSKQikFHFc2evZxKl3HexdRempfYM-Y58Eo0AqcakvY3m--TTyj9AVJX1KCLuVelX3GaEpIQPOj9AZoznrMZHkXw53Tk7RZQhrEo9IqMjoCTplmRCUJOQM_Z6bjQuuhoC3pl3hhbE_8MQo70yDZzvt3RIsHjkPuHV40UplrPkJWE2mEywbjR-9q10buyvAz66LLzOQ1jRL7Cp8b0rYe8cAG7yA0jX6768_Y1h6ALwopdUX6LiSNsDlez1HT5O776NZb_4w_TYaznslp4T3oKp0klVKKa6YFKLKlRJQqixl2SDNGI8Yg4wonjPNqOZasJwkUpbpQIr4Qefo69678e6lg9AWtQklWCsbcF0oaE55FodTGtGbT-jadb6J20WK5wkRlCaR6u-p0rsQPFTFxpta-l1BSfGWT_GWT3HIJw5cv2s7VYM-4B9pRCDfA1tjYfcfXTEcz-7_yV8BxPib9A</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Xu, He‐Lin</creator><creator>Chen, Pian‐Pian</creator><creator>ZhuGe, De‐Li</creator><creator>Zhu, Qun‐Yan</creator><creator>Jin, Bing‐Hui</creator><creator>Shen, Bi‐Xin</creator><creator>Xiao, Jian</creator><creator>Zhao, Ying‐Zheng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second‐Degree Scald</title><author>Xu, He‐Lin ; Chen, Pian‐Pian ; ZhuGe, De‐Li ; Zhu, Qun‐Yan ; Jin, Bing‐Hui ; Shen, Bi‐Xin ; Xiao, Jian ; Zhao, Ying‐Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4104-effd58fbbb4b2a66f9bb6ecb872837824c412e80b492d21d4d62905aac73a6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>bFGF</topic><topic>Burns - drug therapy</topic><topic>Burns - pathology</topic><topic>Cell proliferation</topic><topic>deep second‐degree scalds</topic><topic>Diffusion</topic><topic>Drug Compounding - methods</topic><topic>Drug Stability</topic><topic>Encapsulation</topic><topic>Fibroblast growth factor 2</topic><topic>Fibroblast Growth Factor 2 - administration &amp; dosage</topic><topic>Fibroblast Growth Factor 2 - chemistry</topic><topic>Fibroins - chemistry</topic><topic>Fluids</topic><topic>Gelation</topic><topic>Growth factors</topic><topic>hydrogel cores</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Liposomes</topic><topic>Liposomes - chemistry</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - ultrastructure</topic><topic>Particle Size</topic><topic>Regeneration</topic><topic>Scald</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Sonication</topic><topic>Stability</topic><topic>Treatment Outcome</topic><topic>Wound Closure Techniques</topic><topic>Wound healing</topic><topic>Wound Healing - drug effects</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, He‐Lin</creatorcontrib><creatorcontrib>Chen, Pian‐Pian</creatorcontrib><creatorcontrib>ZhuGe, De‐Li</creatorcontrib><creatorcontrib>Zhu, Qun‐Yan</creatorcontrib><creatorcontrib>Jin, Bing‐Hui</creatorcontrib><creatorcontrib>Shen, Bi‐Xin</creatorcontrib><creatorcontrib>Xiao, Jian</creatorcontrib><creatorcontrib>Zhao, Ying‐Zheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, He‐Lin</au><au>Chen, Pian‐Pian</au><au>ZhuGe, De‐Li</au><au>Zhu, Qun‐Yan</au><au>Jin, Bing‐Hui</au><au>Shen, Bi‐Xin</au><au>Xiao, Jian</au><au>Zhao, Ying‐Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second‐Degree Scald</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-10</date><risdate>2017</risdate><volume>6</volume><issue>19</issue><epage>n/a</epage><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF‐LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF‐LIP is capable of encapsulating bFGF (SF‐bFGF‐LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of −9.41 ± 0.10 mV. SF‐LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF‐LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF‐bFGF‐LIP are still preserved but these are severely compromised for the conventional bFGF‐liposome (bFGF‐LIP). In vivo experiments reveal that SF‐bFGF‐LIP accelerates the wound closure of mice with deep second‐degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF‐bFGF‐LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF‐LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing. Maintaining the stability of basic fibroblast growth factor (bFGF) in wound fluids is important to accelerate wound healing. In this study, a novel liposome (LIP) with silk fibroin (SF) hydrogel core has been proposed as an innovative carrier of bFGF for deep second‐degree scald. Due to the protective effect and enhanced penetration ability, SF‐bFGF‐LIP exhibits a better wound healing effect than free bFGF or the common bFGF‐liposome.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28661050</pmid><doi>10.1002/adhm.201700344</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2017-10, Vol.6 (19), p.n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1914849271
source MEDLINE; Access via Wiley Online Library
subjects Animals
bFGF
Burns - drug therapy
Burns - pathology
Cell proliferation
deep second‐degree scalds
Diffusion
Drug Compounding - methods
Drug Stability
Encapsulation
Fibroblast growth factor 2
Fibroblast Growth Factor 2 - administration & dosage
Fibroblast Growth Factor 2 - chemistry
Fibroins - chemistry
Fluids
Gelation
Growth factors
hydrogel cores
Hydrogels
Hydrogels - chemistry
Liposomes
Liposomes - chemistry
Mice
Mice, Inbred C57BL
Nanocapsules - chemistry
Nanocapsules - ultrastructure
Particle Size
Regeneration
Scald
Silk
Silk fibroin
Sonication
Stability
Treatment Outcome
Wound Closure Techniques
Wound healing
Wound Healing - drug effects
Zeta potential
title Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second‐Degree Scald
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liposomes%20with%20Silk%20Fibroin%20Hydrogel%20Core%20to%20Stabilize%20bFGF%20and%20Promote%20the%20Wound%20Healing%20of%20Mice%20with%20Deep%20Second%E2%80%90Degree%20Scald&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Xu,%20He%E2%80%90Lin&rft.date=2017-10&rft.volume=6&rft.issue=19&rft.epage=n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201700344&rft_dat=%3Cproquest_cross%3E1949506115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949506115&rft_id=info:pmid/28661050&rfr_iscdi=true