Addressing current challenges in cancer immunotherapy with mathematical and computational modelling

The goal of cancer immunotherapy is to boost a patient's immune response to a tumour. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumour microenvironment, immune-modulating effects of conventional treatments and ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2017-06, Vol.14 (131), p.20170150-20170150
Hauptverfasser: Konstorum, Anna, Vella, Anthony T., Adler, Adam J., Laubenbacher, Reinhard C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20170150
container_issue 131
container_start_page 20170150
container_title Journal of the Royal Society interface
container_volume 14
creator Konstorum, Anna
Vella, Anthony T.
Adler, Adam J.
Laubenbacher, Reinhard C.
description The goal of cancer immunotherapy is to boost a patient's immune response to a tumour. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumour microenvironment, immune-modulating effects of conventional treatments and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modelling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumour classification, optimal treatment scheduling and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modellers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumour–immune biology. We conclude the review with recommendations for modellers both with respect to methodology and biological direction that might help keep modellers at the forefront of cancer immunotherapy development.
doi_str_mv 10.1098/rsif.2017.0150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1914846108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914846108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-f5fddc04a4caed6d50379a82299d50dc17b66d57f956dfce3bde824687a3d81d3</originalsourceid><addsrcrecordid>eNp9Uc9vFCEYJUZj29WrR0PipZddYfgxzMWkaaxt0sSk6pmwwOzSzMAIMzXbv95vsnW1GnuBj4_He9_jIfSGkhUljXqfS2hXFaH1ilBBnqFjWvNqKaSsnh9q1Ryhk1JuCWE1E-IlOqqUFA2n5BjZM-eyLyXEDbZTzj6O2G5N1_m48QWHiK2J1mcc-n6Kadz6bIYd_hHGLe4NHGEJ1nTYRIdt6odphEaK0OmT810HxK_Qi9Z0xb9-2Bfo28XHr-eXy-vPn67Oz66XVgg1LlvROmcJN9wa76QTMG5jVFU1DdTO0notoVu3jZCutZ6tnVcVl6o2zCnq2AJ92PMO07r3zoKXbDo95NCbvNPJBP34Joat3qQ7LXgDUgoITh8Icvo--TLqPhQLJkz0aSqaNpQrLimZoe_-gt6mKYPtGaWYrGsC371Aqz3K5lRK9u1hGEr0nJ-e89NzfnrODx68_dPCAf4rMABs9oCcdiCWbPDj7rf2zZerizvKA2VUw5SUcC6Z1Pdh2CtRrkMpk9cz4LH2v6Owp5T-Y-An_UzNjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983677000</pqid></control><display><type>article</type><title>Addressing current challenges in cancer immunotherapy with mathematical and computational modelling</title><source>MEDLINE</source><source>PubMed Central</source><creator>Konstorum, Anna ; Vella, Anthony T. ; Adler, Adam J. ; Laubenbacher, Reinhard C.</creator><creatorcontrib>Konstorum, Anna ; Vella, Anthony T. ; Adler, Adam J. ; Laubenbacher, Reinhard C.</creatorcontrib><description>The goal of cancer immunotherapy is to boost a patient's immune response to a tumour. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumour microenvironment, immune-modulating effects of conventional treatments and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modelling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumour classification, optimal treatment scheduling and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modellers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumour–immune biology. We conclude the review with recommendations for modellers both with respect to methodology and biological direction that might help keep modellers at the forefront of cancer immunotherapy development.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2017.0150</identifier><identifier>PMID: 28659410</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Cancer ; Cancer Immunotherapy ; Cancer therapies ; Computation ; Computer applications ; Computer Simulation ; Design ; Humans ; Immune response ; Immune system ; Immunomodulation ; Immunosuppression ; Immunotherapy ; Immunotherapy - methods ; Mathematical analysis ; Mathematical Modelling ; Mathematical models ; Models, Biological ; Neoplasms - genetics ; Neoplasms - therapy ; Numerical analysis ; Optimal Control ; Optimization ; Review ; Review Articles ; Reviews ; Therapy ; Toxicity ; Tumor microenvironment ; Tumors</subject><ispartof>Journal of the Royal Society interface, 2017-06, Vol.14 (131), p.20170150-20170150</ispartof><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Jun 2017</rights><rights>2017 The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-f5fddc04a4caed6d50379a82299d50dc17b66d57f956dfce3bde824687a3d81d3</citedby><cites>FETCH-LOGICAL-c558t-f5fddc04a4caed6d50379a82299d50dc17b66d57f956dfce3bde824687a3d81d3</cites><orcidid>0000-0003-4024-2058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28659410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konstorum, Anna</creatorcontrib><creatorcontrib>Vella, Anthony T.</creatorcontrib><creatorcontrib>Adler, Adam J.</creatorcontrib><creatorcontrib>Laubenbacher, Reinhard C.</creatorcontrib><title>Addressing current challenges in cancer immunotherapy with mathematical and computational modelling</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>The goal of cancer immunotherapy is to boost a patient's immune response to a tumour. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumour microenvironment, immune-modulating effects of conventional treatments and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modelling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumour classification, optimal treatment scheduling and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modellers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumour–immune biology. We conclude the review with recommendations for modellers both with respect to methodology and biological direction that might help keep modellers at the forefront of cancer immunotherapy development.</description><subject>Cancer</subject><subject>Cancer Immunotherapy</subject><subject>Cancer therapies</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Design</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunomodulation</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Mathematical analysis</subject><subject>Mathematical Modelling</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - therapy</subject><subject>Numerical analysis</subject><subject>Optimal Control</subject><subject>Optimization</subject><subject>Review</subject><subject>Review Articles</subject><subject>Reviews</subject><subject>Therapy</subject><subject>Toxicity</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uc9vFCEYJUZj29WrR0PipZddYfgxzMWkaaxt0sSk6pmwwOzSzMAIMzXbv95vsnW1GnuBj4_He9_jIfSGkhUljXqfS2hXFaH1ilBBnqFjWvNqKaSsnh9q1Ryhk1JuCWE1E-IlOqqUFA2n5BjZM-eyLyXEDbZTzj6O2G5N1_m48QWHiK2J1mcc-n6Kadz6bIYd_hHGLe4NHGEJ1nTYRIdt6odphEaK0OmT810HxK_Qi9Z0xb9-2Bfo28XHr-eXy-vPn67Oz66XVgg1LlvROmcJN9wa76QTMG5jVFU1DdTO0notoVu3jZCutZ6tnVcVl6o2zCnq2AJ92PMO07r3zoKXbDo95NCbvNPJBP34Joat3qQ7LXgDUgoITh8Icvo--TLqPhQLJkz0aSqaNpQrLimZoe_-gt6mKYPtGaWYrGsC371Aqz3K5lRK9u1hGEr0nJ-e89NzfnrODx68_dPCAf4rMABs9oCcdiCWbPDj7rf2zZerizvKA2VUw5SUcC6Z1Pdh2CtRrkMpk9cz4LH2v6Owp5T-Y-An_UzNjg</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Konstorum, Anna</creator><creator>Vella, Anthony T.</creator><creator>Adler, Adam J.</creator><creator>Laubenbacher, Reinhard C.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4024-2058</orcidid></search><sort><creationdate>20170601</creationdate><title>Addressing current challenges in cancer immunotherapy with mathematical and computational modelling</title><author>Konstorum, Anna ; Vella, Anthony T. ; Adler, Adam J. ; Laubenbacher, Reinhard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-f5fddc04a4caed6d50379a82299d50dc17b66d57f956dfce3bde824687a3d81d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cancer</topic><topic>Cancer Immunotherapy</topic><topic>Cancer therapies</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Design</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunomodulation</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Mathematical analysis</topic><topic>Mathematical Modelling</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - therapy</topic><topic>Numerical analysis</topic><topic>Optimal Control</topic><topic>Optimization</topic><topic>Review</topic><topic>Review Articles</topic><topic>Reviews</topic><topic>Therapy</topic><topic>Toxicity</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konstorum, Anna</creatorcontrib><creatorcontrib>Vella, Anthony T.</creatorcontrib><creatorcontrib>Adler, Adam J.</creatorcontrib><creatorcontrib>Laubenbacher, Reinhard C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konstorum, Anna</au><au>Vella, Anthony T.</au><au>Adler, Adam J.</au><au>Laubenbacher, Reinhard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Addressing current challenges in cancer immunotherapy with mathematical and computational modelling</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>14</volume><issue>131</issue><spage>20170150</spage><epage>20170150</epage><pages>20170150-20170150</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>The goal of cancer immunotherapy is to boost a patient's immune response to a tumour. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumour microenvironment, immune-modulating effects of conventional treatments and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modelling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumour classification, optimal treatment scheduling and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modellers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumour–immune biology. We conclude the review with recommendations for modellers both with respect to methodology and biological direction that might help keep modellers at the forefront of cancer immunotherapy development.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>28659410</pmid><doi>10.1098/rsif.2017.0150</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4024-2058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2017-06, Vol.14 (131), p.20170150-20170150
issn 1742-5689
1742-5662
language eng
recordid cdi_proquest_miscellaneous_1914846108
source MEDLINE; PubMed Central
subjects Cancer
Cancer Immunotherapy
Cancer therapies
Computation
Computer applications
Computer Simulation
Design
Humans
Immune response
Immune system
Immunomodulation
Immunosuppression
Immunotherapy
Immunotherapy - methods
Mathematical analysis
Mathematical Modelling
Mathematical models
Models, Biological
Neoplasms - genetics
Neoplasms - therapy
Numerical analysis
Optimal Control
Optimization
Review
Review Articles
Reviews
Therapy
Toxicity
Tumor microenvironment
Tumors
title Addressing current challenges in cancer immunotherapy with mathematical and computational modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Addressing%20current%20challenges%20in%20cancer%20immunotherapy%20with%20mathematical%20and%20computational%20modelling&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Konstorum,%20Anna&rft.date=2017-06-01&rft.volume=14&rft.issue=131&rft.spage=20170150&rft.epage=20170150&rft.pages=20170150-20170150&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2017.0150&rft_dat=%3Cproquest_cross%3E1914846108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983677000&rft_id=info:pmid/28659410&rfr_iscdi=true