An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor

A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-09, Vol.29 (33), p.n/a
Hauptverfasser: Cha, Hyojung, Wu, Jiaying, Wadsworth, Andrew, Nagitta, Jade, Limbu, Saurav, Pont, Sebastian, Li, Zhe, Searle, Justin, Wyatt, Mark F., Baran, Derya, Kim, Ji‐Seon, McCulloch, Iain, Durrant, James R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Cha, Hyojung
Wu, Jiaying
Wadsworth, Andrew
Nagitta, Jade
Limbu, Saurav
Pont, Sebastian
Li, Zhe
Searle, Justin
Wyatt, Mark F.
Baran, Derya
Kim, Ji‐Seon
McCulloch, Iain
Durrant, James R.
description A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices. A high efficiency, burn‐in‐free nonfullerene‐based PffBT4T‐2OD:EH‐IDTBR solar cell is reported, fabricated without processing additives. Transient absorption and optoelectronic analyses elucidate the causes of this high efficiency and stability, with the superior stability compared to PC71BM devices being correlated with increased crystallinity and reduced photogeneration of trap states.
doi_str_mv 10.1002/adma.201701156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1914580850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914580850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4526-b796de647b9a0253b98757e27b7a64387eeab97e8fc9f684b45f8cde5e833f703</originalsourceid><addsrcrecordid>eNqF0L9OHDEQBnALJYIL0FJGlmgoshd7_b9cLkeCRKAAWlZe3xgt8toX763QdTxI8nI8SfZ0QCSaVNP85tPMh9ARJVNKSPnVLjo7LQlVhFIhd9CEipIWnBjxAU2IYaIwkus99KnvHwghRhK5i_ZKLYUa5QTdVRHPvW9dC3H1BT8__T4dcsRtfH76g88yAL7K9za2Dl-nYDOeQQh43i1DWrfxHlt8maIfQoAMEfA8gFvlFHHlHCxXKR-gj96GHg5f5j66PZvfzH4UF1ffz2fVReG4KGXRKCMXILlqjCWlYI3RSigoVaOs5EwrANsYBdo746XmDRdeuwUI0Ix5Rdg-OtnmLnP6NUC_qru2d-OtNkIa-poayoUmWmzo8Tv6kMaXx-tGxTgrNeN8VNOtcjn1fQZfL3Pb2byuKak3zdeb5uu35seFzy-xQ9PB4o2_Vj0CswWPbYD1f-Lq6tvP6l_4X3p2j8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934328344</pqid></control><display><type>article</type><title>An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</title><source>Wiley Online Library All Journals</source><creator>Cha, Hyojung ; Wu, Jiaying ; Wadsworth, Andrew ; Nagitta, Jade ; Limbu, Saurav ; Pont, Sebastian ; Li, Zhe ; Searle, Justin ; Wyatt, Mark F. ; Baran, Derya ; Kim, Ji‐Seon ; McCulloch, Iain ; Durrant, James R.</creator><creatorcontrib>Cha, Hyojung ; Wu, Jiaying ; Wadsworth, Andrew ; Nagitta, Jade ; Limbu, Saurav ; Pont, Sebastian ; Li, Zhe ; Searle, Justin ; Wyatt, Mark F. ; Baran, Derya ; Kim, Ji‐Seon ; McCulloch, Iain ; Durrant, James R.</creatorcontrib><description>A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices. A high efficiency, burn‐in‐free nonfullerene‐based PffBT4T‐2OD:EH‐IDTBR solar cell is reported, fabricated without processing additives. Transient absorption and optoelectronic analyses elucidate the causes of this high efficiency and stability, with the superior stability compared to PC71BM devices being correlated with increased crystallinity and reduced photogeneration of trap states.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201701156</identifier><identifier>PMID: 28657152</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Burn-in ; Butyric acid ; Charge efficiency ; charge separation ; Devices ; Energy conversion efficiency ; Materials science ; Molecular orbitals ; nonfullerene acceptors ; Open circuit voltage ; organic solar cells ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Photovoltaic cells ; Polymer blends ; Quenching ; Separation ; Solar cells ; trap assisted recombination</subject><ispartof>Advanced materials (Weinheim), 2017-09, Vol.29 (33), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4526-b796de647b9a0253b98757e27b7a64387eeab97e8fc9f684b45f8cde5e833f703</citedby><cites>FETCH-LOGICAL-c4526-b796de647b9a0253b98757e27b7a64387eeab97e8fc9f684b45f8cde5e833f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201701156$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201701156$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28657152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cha, Hyojung</creatorcontrib><creatorcontrib>Wu, Jiaying</creatorcontrib><creatorcontrib>Wadsworth, Andrew</creatorcontrib><creatorcontrib>Nagitta, Jade</creatorcontrib><creatorcontrib>Limbu, Saurav</creatorcontrib><creatorcontrib>Pont, Sebastian</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Searle, Justin</creatorcontrib><creatorcontrib>Wyatt, Mark F.</creatorcontrib><creatorcontrib>Baran, Derya</creatorcontrib><creatorcontrib>Kim, Ji‐Seon</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><title>An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices. A high efficiency, burn‐in‐free nonfullerene‐based PffBT4T‐2OD:EH‐IDTBR solar cell is reported, fabricated without processing additives. Transient absorption and optoelectronic analyses elucidate the causes of this high efficiency and stability, with the superior stability compared to PC71BM devices being correlated with increased crystallinity and reduced photogeneration of trap states.</description><subject>Burn-in</subject><subject>Butyric acid</subject><subject>Charge efficiency</subject><subject>charge separation</subject><subject>Devices</subject><subject>Energy conversion efficiency</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>nonfullerene acceptors</subject><subject>Open circuit voltage</subject><subject>organic solar cells</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Polymer blends</subject><subject>Quenching</subject><subject>Separation</subject><subject>Solar cells</subject><subject>trap assisted recombination</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0L9OHDEQBnALJYIL0FJGlmgoshd7_b9cLkeCRKAAWlZe3xgt8toX763QdTxI8nI8SfZ0QCSaVNP85tPMh9ARJVNKSPnVLjo7LQlVhFIhd9CEipIWnBjxAU2IYaIwkus99KnvHwghRhK5i_ZKLYUa5QTdVRHPvW9dC3H1BT8__T4dcsRtfH76g88yAL7K9za2Dl-nYDOeQQh43i1DWrfxHlt8maIfQoAMEfA8gFvlFHHlHCxXKR-gj96GHg5f5j66PZvfzH4UF1ffz2fVReG4KGXRKCMXILlqjCWlYI3RSigoVaOs5EwrANsYBdo746XmDRdeuwUI0Ix5Rdg-OtnmLnP6NUC_qru2d-OtNkIa-poayoUmWmzo8Tv6kMaXx-tGxTgrNeN8VNOtcjn1fQZfL3Pb2byuKak3zdeb5uu35seFzy-xQ9PB4o2_Vj0CswWPbYD1f-Lq6tvP6l_4X3p2j8Q</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Cha, Hyojung</creator><creator>Wu, Jiaying</creator><creator>Wadsworth, Andrew</creator><creator>Nagitta, Jade</creator><creator>Limbu, Saurav</creator><creator>Pont, Sebastian</creator><creator>Li, Zhe</creator><creator>Searle, Justin</creator><creator>Wyatt, Mark F.</creator><creator>Baran, Derya</creator><creator>Kim, Ji‐Seon</creator><creator>McCulloch, Iain</creator><creator>Durrant, James R.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</title><author>Cha, Hyojung ; Wu, Jiaying ; Wadsworth, Andrew ; Nagitta, Jade ; Limbu, Saurav ; Pont, Sebastian ; Li, Zhe ; Searle, Justin ; Wyatt, Mark F. ; Baran, Derya ; Kim, Ji‐Seon ; McCulloch, Iain ; Durrant, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4526-b796de647b9a0253b98757e27b7a64387eeab97e8fc9f684b45f8cde5e833f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Burn-in</topic><topic>Butyric acid</topic><topic>Charge efficiency</topic><topic>charge separation</topic><topic>Devices</topic><topic>Energy conversion efficiency</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>nonfullerene acceptors</topic><topic>Open circuit voltage</topic><topic>organic solar cells</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Polymer blends</topic><topic>Quenching</topic><topic>Separation</topic><topic>Solar cells</topic><topic>trap assisted recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cha, Hyojung</creatorcontrib><creatorcontrib>Wu, Jiaying</creatorcontrib><creatorcontrib>Wadsworth, Andrew</creatorcontrib><creatorcontrib>Nagitta, Jade</creatorcontrib><creatorcontrib>Limbu, Saurav</creatorcontrib><creatorcontrib>Pont, Sebastian</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Searle, Justin</creatorcontrib><creatorcontrib>Wyatt, Mark F.</creatorcontrib><creatorcontrib>Baran, Derya</creatorcontrib><creatorcontrib>Kim, Ji‐Seon</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cha, Hyojung</au><au>Wu, Jiaying</au><au>Wadsworth, Andrew</au><au>Nagitta, Jade</au><au>Limbu, Saurav</au><au>Pont, Sebastian</au><au>Li, Zhe</au><au>Searle, Justin</au><au>Wyatt, Mark F.</au><au>Baran, Derya</au><au>Kim, Ji‐Seon</au><au>McCulloch, Iain</au><au>Durrant, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-09</date><risdate>2017</risdate><volume>29</volume><issue>33</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices. A high efficiency, burn‐in‐free nonfullerene‐based PffBT4T‐2OD:EH‐IDTBR solar cell is reported, fabricated without processing additives. Transient absorption and optoelectronic analyses elucidate the causes of this high efficiency and stability, with the superior stability compared to PC71BM devices being correlated with increased crystallinity and reduced photogeneration of trap states.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28657152</pmid><doi>10.1002/adma.201701156</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-09, Vol.29 (33), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1914580850
source Wiley Online Library All Journals
subjects Burn-in
Butyric acid
Charge efficiency
charge separation
Devices
Energy conversion efficiency
Materials science
Molecular orbitals
nonfullerene acceptors
Open circuit voltage
organic solar cells
Photoelectric effect
Photoelectric emission
Photoluminescence
Photovoltaic cells
Polymer blends
Quenching
Separation
Solar cells
trap assisted recombination
title An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient,%20%E2%80%9CBurn%20in%E2%80%9D%20Free%20Organic%20Solar%20Cell%20Employing%20a%20Nonfullerene%20Electron%20Acceptor&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cha,%20Hyojung&rft.date=2017-09&rft.volume=29&rft.issue=33&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201701156&rft_dat=%3Cproquest_cross%3E1914580850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934328344&rft_id=info:pmid/28657152&rfr_iscdi=true