An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor E...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2017-09, Vol.29 (33), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 33 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 29 |
creator | Cha, Hyojung Wu, Jiaying Wadsworth, Andrew Nagitta, Jade Limbu, Saurav Pont, Sebastian Li, Zhe Searle, Justin Wyatt, Mark F. Baran, Derya Kim, Ji‐Seon McCulloch, Iain Durrant, James R. |
description | A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices.
A high efficiency, burn‐in‐free nonfullerene‐based PffBT4T‐2OD:EH‐IDTBR solar cell is reported, fabricated without processing additives. Transient absorption and optoelectronic analyses elucidate the causes of this high efficiency and stability, with the superior stability compared to PC71BM devices being correlated with increased crystallinity and reduced photogeneration of trap states. |
doi_str_mv | 10.1002/adma.201701156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1914580850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914580850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4526-b796de647b9a0253b98757e27b7a64387eeab97e8fc9f684b45f8cde5e833f703</originalsourceid><addsrcrecordid>eNqF0L9OHDEQBnALJYIL0FJGlmgoshd7_b9cLkeCRKAAWlZe3xgt8toX763QdTxI8nI8SfZ0QCSaVNP85tPMh9ARJVNKSPnVLjo7LQlVhFIhd9CEipIWnBjxAU2IYaIwkus99KnvHwghRhK5i_ZKLYUa5QTdVRHPvW9dC3H1BT8__T4dcsRtfH76g88yAL7K9za2Dl-nYDOeQQh43i1DWrfxHlt8maIfQoAMEfA8gFvlFHHlHCxXKR-gj96GHg5f5j66PZvfzH4UF1ffz2fVReG4KGXRKCMXILlqjCWlYI3RSigoVaOs5EwrANsYBdo746XmDRdeuwUI0Ix5Rdg-OtnmLnP6NUC_qru2d-OtNkIa-poayoUmWmzo8Tv6kMaXx-tGxTgrNeN8VNOtcjn1fQZfL3Pb2byuKak3zdeb5uu35seFzy-xQ9PB4o2_Vj0CswWPbYD1f-Lq6tvP6l_4X3p2j8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934328344</pqid></control><display><type>article</type><title>An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</title><source>Wiley Online Library All Journals</source><creator>Cha, Hyojung ; Wu, Jiaying ; Wadsworth, Andrew ; Nagitta, Jade ; Limbu, Saurav ; Pont, Sebastian ; Li, Zhe ; Searle, Justin ; Wyatt, Mark F. ; Baran, Derya ; Kim, Ji‐Seon ; McCulloch, Iain ; Durrant, James R.</creator><creatorcontrib>Cha, Hyojung ; Wu, Jiaying ; Wadsworth, Andrew ; Nagitta, Jade ; Limbu, Saurav ; Pont, Sebastian ; Li, Zhe ; Searle, Justin ; Wyatt, Mark F. ; Baran, Derya ; Kim, Ji‐Seon ; McCulloch, Iain ; Durrant, James R.</creatorcontrib><description>A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices.
A high efficiency, burn‐in‐free nonfullerene‐based PffBT4T‐2OD:EH‐IDTBR solar cell is reported, fabricated without processing additives. Transient absorption and optoelectronic analyses elucidate the causes of this high efficiency and stability, with the superior stability compared to PC71BM devices being correlated with increased crystallinity and reduced photogeneration of trap states.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201701156</identifier><identifier>PMID: 28657152</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Burn-in ; Butyric acid ; Charge efficiency ; charge separation ; Devices ; Energy conversion efficiency ; Materials science ; Molecular orbitals ; nonfullerene acceptors ; Open circuit voltage ; organic solar cells ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Photovoltaic cells ; Polymer blends ; Quenching ; Separation ; Solar cells ; trap assisted recombination</subject><ispartof>Advanced materials (Weinheim), 2017-09, Vol.29 (33), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4526-b796de647b9a0253b98757e27b7a64387eeab97e8fc9f684b45f8cde5e833f703</citedby><cites>FETCH-LOGICAL-c4526-b796de647b9a0253b98757e27b7a64387eeab97e8fc9f684b45f8cde5e833f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201701156$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201701156$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28657152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cha, Hyojung</creatorcontrib><creatorcontrib>Wu, Jiaying</creatorcontrib><creatorcontrib>Wadsworth, Andrew</creatorcontrib><creatorcontrib>Nagitta, Jade</creatorcontrib><creatorcontrib>Limbu, Saurav</creatorcontrib><creatorcontrib>Pont, Sebastian</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Searle, Justin</creatorcontrib><creatorcontrib>Wyatt, Mark F.</creatorcontrib><creatorcontrib>Baran, Derya</creatorcontrib><creatorcontrib>Kim, Ji‐Seon</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><title>An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices.
A high efficiency, burn‐in‐free nonfullerene‐based PffBT4T‐2OD:EH‐IDTBR solar cell is reported, fabricated without processing additives. Transient absorption and optoelectronic analyses elucidate the causes of this high efficiency and stability, with the superior stability compared to PC71BM devices being correlated with increased crystallinity and reduced photogeneration of trap states.</description><subject>Burn-in</subject><subject>Butyric acid</subject><subject>Charge efficiency</subject><subject>charge separation</subject><subject>Devices</subject><subject>Energy conversion efficiency</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>nonfullerene acceptors</subject><subject>Open circuit voltage</subject><subject>organic solar cells</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Polymer blends</subject><subject>Quenching</subject><subject>Separation</subject><subject>Solar cells</subject><subject>trap assisted recombination</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0L9OHDEQBnALJYIL0FJGlmgoshd7_b9cLkeCRKAAWlZe3xgt8toX763QdTxI8nI8SfZ0QCSaVNP85tPMh9ARJVNKSPnVLjo7LQlVhFIhd9CEipIWnBjxAU2IYaIwkus99KnvHwghRhK5i_ZKLYUa5QTdVRHPvW9dC3H1BT8__T4dcsRtfH76g88yAL7K9za2Dl-nYDOeQQh43i1DWrfxHlt8maIfQoAMEfA8gFvlFHHlHCxXKR-gj96GHg5f5j66PZvfzH4UF1ffz2fVReG4KGXRKCMXILlqjCWlYI3RSigoVaOs5EwrANsYBdo746XmDRdeuwUI0Ix5Rdg-OtnmLnP6NUC_qru2d-OtNkIa-poayoUmWmzo8Tv6kMaXx-tGxTgrNeN8VNOtcjn1fQZfL3Pb2byuKak3zdeb5uu35seFzy-xQ9PB4o2_Vj0CswWPbYD1f-Lq6tvP6l_4X3p2j8Q</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Cha, Hyojung</creator><creator>Wu, Jiaying</creator><creator>Wadsworth, Andrew</creator><creator>Nagitta, Jade</creator><creator>Limbu, Saurav</creator><creator>Pont, Sebastian</creator><creator>Li, Zhe</creator><creator>Searle, Justin</creator><creator>Wyatt, Mark F.</creator><creator>Baran, Derya</creator><creator>Kim, Ji‐Seon</creator><creator>McCulloch, Iain</creator><creator>Durrant, James R.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</title><author>Cha, Hyojung ; Wu, Jiaying ; Wadsworth, Andrew ; Nagitta, Jade ; Limbu, Saurav ; Pont, Sebastian ; Li, Zhe ; Searle, Justin ; Wyatt, Mark F. ; Baran, Derya ; Kim, Ji‐Seon ; McCulloch, Iain ; Durrant, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4526-b796de647b9a0253b98757e27b7a64387eeab97e8fc9f684b45f8cde5e833f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Burn-in</topic><topic>Butyric acid</topic><topic>Charge efficiency</topic><topic>charge separation</topic><topic>Devices</topic><topic>Energy conversion efficiency</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>nonfullerene acceptors</topic><topic>Open circuit voltage</topic><topic>organic solar cells</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Polymer blends</topic><topic>Quenching</topic><topic>Separation</topic><topic>Solar cells</topic><topic>trap assisted recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cha, Hyojung</creatorcontrib><creatorcontrib>Wu, Jiaying</creatorcontrib><creatorcontrib>Wadsworth, Andrew</creatorcontrib><creatorcontrib>Nagitta, Jade</creatorcontrib><creatorcontrib>Limbu, Saurav</creatorcontrib><creatorcontrib>Pont, Sebastian</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Searle, Justin</creatorcontrib><creatorcontrib>Wyatt, Mark F.</creatorcontrib><creatorcontrib>Baran, Derya</creatorcontrib><creatorcontrib>Kim, Ji‐Seon</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cha, Hyojung</au><au>Wu, Jiaying</au><au>Wadsworth, Andrew</au><au>Nagitta, Jade</au><au>Limbu, Saurav</au><au>Pont, Sebastian</au><au>Li, Zhe</au><au>Searle, Justin</au><au>Wyatt, Mark F.</au><au>Baran, Derya</au><au>Kim, Ji‐Seon</au><au>McCulloch, Iain</au><au>Durrant, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-09</date><risdate>2017</risdate><volume>29</volume><issue>33</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices.
A high efficiency, burn‐in‐free nonfullerene‐based PffBT4T‐2OD:EH‐IDTBR solar cell is reported, fabricated without processing additives. Transient absorption and optoelectronic analyses elucidate the causes of this high efficiency and stability, with the superior stability compared to PC71BM devices being correlated with increased crystallinity and reduced photogeneration of trap states.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28657152</pmid><doi>10.1002/adma.201701156</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2017-09, Vol.29 (33), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1914580850 |
source | Wiley Online Library All Journals |
subjects | Burn-in Butyric acid Charge efficiency charge separation Devices Energy conversion efficiency Materials science Molecular orbitals nonfullerene acceptors Open circuit voltage organic solar cells Photoelectric effect Photoelectric emission Photoluminescence Photovoltaic cells Polymer blends Quenching Separation Solar cells trap assisted recombination |
title | An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient,%20%E2%80%9CBurn%20in%E2%80%9D%20Free%20Organic%20Solar%20Cell%20Employing%20a%20Nonfullerene%20Electron%20Acceptor&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cha,%20Hyojung&rft.date=2017-09&rft.volume=29&rft.issue=33&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201701156&rft_dat=%3Cproquest_cross%3E1914580850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934328344&rft_id=info:pmid/28657152&rfr_iscdi=true |