Omics-based hybrid prediction in maize
Key message Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits . Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in an...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2017-09, Vol.130 (9), p.1927-1939 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1939 |
---|---|
container_issue | 9 |
container_start_page | 1927 |
container_title | Theoretical and applied genetics |
container_volume | 130 |
creator | Westhues, Matthias Schrag, Tobias A. Heuer, Claas Thaller, Georg Utz, H. Friedrich Schipprack, Wolfgang Thiemann, Alexander Seifert, Felix Ehret, Anita Schlereth, Armin Stitt, Mark Nikoloski, Zoran Willmitzer, Lothar Schön, Chris C. Scholten, Stefan Melchinger, Albrecht E. |
description | Key message
Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits
.
Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding. |
doi_str_mv | 10.1007/s00122-017-2934-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1913832440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501402382</galeid><sourcerecordid>A501402382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-8aaa202250a23bc04eb3b3373cf57798c6364d4ecd75c760135ada68ea1a31db3</originalsourceid><addsrcrecordid>eNp1kdFLHDEQxkOp1OvpH9CXclAo9iHnZJLd7D2KaBUEwdbnkE1mr5Hb3WuyC9W_3hyn4hUlD4HM7_tmJh9jXwTMBYA-TgACkYPQHBdScfjAJkJJ5IgKP7IJgAJe6AL32eeU7gAAC5Cf2D5WpdLVopyw79dtcInXNpGf_bmvY_CzdSQf3BD6bha6WWvDAx2wvcauEh0-3VN2e372-_SCX13_vDw9ueKuEOXAK2stAuYuFmXtQFEtaym1dE2h9aJypSyVV-S8LpwuQcjCeltWZIWVwtdyyo62vuvY_x0pDaYNydFqZTvqx2TEQshKolKQ0W__oXf9GLs8XaYkaNRl9Ypa2hWZ0DX9EK3bmJqTAoQClBVmav4GlY-n_D19R03I7zuCHzuCzAz0b1jaMSVz-etmlxVb1sU-pUiNWcfQ2nhvBJhNjmabo8k5mk2OZjP216flxrol_6J4Di4DuAVSLnVLiq-2f9f1EVIQomM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930727680</pqid></control><display><type>article</type><title>Omics-based hybrid prediction in maize</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Westhues, Matthias ; Schrag, Tobias A. ; Heuer, Claas ; Thaller, Georg ; Utz, H. Friedrich ; Schipprack, Wolfgang ; Thiemann, Alexander ; Seifert, Felix ; Ehret, Anita ; Schlereth, Armin ; Stitt, Mark ; Nikoloski, Zoran ; Willmitzer, Lothar ; Schön, Chris C. ; Scholten, Stefan ; Melchinger, Albrecht E.</creator><creatorcontrib>Westhues, Matthias ; Schrag, Tobias A. ; Heuer, Claas ; Thaller, Georg ; Utz, H. Friedrich ; Schipprack, Wolfgang ; Thiemann, Alexander ; Seifert, Felix ; Ehret, Anita ; Schlereth, Armin ; Stitt, Mark ; Nikoloski, Zoran ; Willmitzer, Lothar ; Schön, Chris C. ; Scholten, Stefan ; Melchinger, Albrecht E.</creatorcontrib><description>Key message
Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits
.
Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-2934-0</identifier><identifier>PMID: 28647896</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Breeding ; Chromosome Mapping ; Corn ; Developmental stages ; Dry matter ; Epistasis ; Genetic aspects ; Genomics ; Hybrid Vigor ; Inbreeding ; Information processing ; Integration ; Life Sciences ; Medicinal plants ; Metabolomics ; Methods ; Models, Genetic ; Observations ; Offspring ; Original Article ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Precision medicine ; Quantitative Trait Loci ; Quantitative Trait, Heritable ; Transcriptome ; Zea mays - genetics</subject><ispartof>Theoretical and applied genetics, 2017-09, Vol.130 (9), p.1927-1939</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-8aaa202250a23bc04eb3b3373cf57798c6364d4ecd75c760135ada68ea1a31db3</citedby><cites>FETCH-LOGICAL-c516t-8aaa202250a23bc04eb3b3373cf57798c6364d4ecd75c760135ada68ea1a31db3</cites><orcidid>0000-0003-2671-6763 ; 0000-0001-7025-6632 ; 0000-0002-6782-2039 ; 0000-0002-2241-0778 ; 0000-0003-4624-2403 ; 0000-0003-3297-825X ; 0000-0002-4900-1763 ; 0000-0002-1863-8745 ; 0000-0001-8670-0857 ; 0000-0001-9383-2145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-2934-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-2934-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28647896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westhues, Matthias</creatorcontrib><creatorcontrib>Schrag, Tobias A.</creatorcontrib><creatorcontrib>Heuer, Claas</creatorcontrib><creatorcontrib>Thaller, Georg</creatorcontrib><creatorcontrib>Utz, H. Friedrich</creatorcontrib><creatorcontrib>Schipprack, Wolfgang</creatorcontrib><creatorcontrib>Thiemann, Alexander</creatorcontrib><creatorcontrib>Seifert, Felix</creatorcontrib><creatorcontrib>Ehret, Anita</creatorcontrib><creatorcontrib>Schlereth, Armin</creatorcontrib><creatorcontrib>Stitt, Mark</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><creatorcontrib>Willmitzer, Lothar</creatorcontrib><creatorcontrib>Schön, Chris C.</creatorcontrib><creatorcontrib>Scholten, Stefan</creatorcontrib><creatorcontrib>Melchinger, Albrecht E.</creatorcontrib><title>Omics-based hybrid prediction in maize</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits
.
Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.</description><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Chromosome Mapping</subject><subject>Corn</subject><subject>Developmental stages</subject><subject>Dry matter</subject><subject>Epistasis</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Hybrid Vigor</subject><subject>Inbreeding</subject><subject>Information processing</subject><subject>Integration</subject><subject>Life Sciences</subject><subject>Medicinal plants</subject><subject>Metabolomics</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Observations</subject><subject>Offspring</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Precision medicine</subject><subject>Quantitative Trait Loci</subject><subject>Quantitative Trait, Heritable</subject><subject>Transcriptome</subject><subject>Zea mays - genetics</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kdFLHDEQxkOp1OvpH9CXclAo9iHnZJLd7D2KaBUEwdbnkE1mr5Hb3WuyC9W_3hyn4hUlD4HM7_tmJh9jXwTMBYA-TgACkYPQHBdScfjAJkJJ5IgKP7IJgAJe6AL32eeU7gAAC5Cf2D5WpdLVopyw79dtcInXNpGf_bmvY_CzdSQf3BD6bha6WWvDAx2wvcauEh0-3VN2e372-_SCX13_vDw9ueKuEOXAK2stAuYuFmXtQFEtaym1dE2h9aJypSyVV-S8LpwuQcjCeltWZIWVwtdyyo62vuvY_x0pDaYNydFqZTvqx2TEQshKolKQ0W__oXf9GLs8XaYkaNRl9Ypa2hWZ0DX9EK3bmJqTAoQClBVmav4GlY-n_D19R03I7zuCHzuCzAz0b1jaMSVz-etmlxVb1sU-pUiNWcfQ2nhvBJhNjmabo8k5mk2OZjP216flxrol_6J4Di4DuAVSLnVLiq-2f9f1EVIQomM</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Westhues, Matthias</creator><creator>Schrag, Tobias A.</creator><creator>Heuer, Claas</creator><creator>Thaller, Georg</creator><creator>Utz, H. Friedrich</creator><creator>Schipprack, Wolfgang</creator><creator>Thiemann, Alexander</creator><creator>Seifert, Felix</creator><creator>Ehret, Anita</creator><creator>Schlereth, Armin</creator><creator>Stitt, Mark</creator><creator>Nikoloski, Zoran</creator><creator>Willmitzer, Lothar</creator><creator>Schön, Chris C.</creator><creator>Scholten, Stefan</creator><creator>Melchinger, Albrecht E.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2671-6763</orcidid><orcidid>https://orcid.org/0000-0001-7025-6632</orcidid><orcidid>https://orcid.org/0000-0002-6782-2039</orcidid><orcidid>https://orcid.org/0000-0002-2241-0778</orcidid><orcidid>https://orcid.org/0000-0003-4624-2403</orcidid><orcidid>https://orcid.org/0000-0003-3297-825X</orcidid><orcidid>https://orcid.org/0000-0002-4900-1763</orcidid><orcidid>https://orcid.org/0000-0002-1863-8745</orcidid><orcidid>https://orcid.org/0000-0001-8670-0857</orcidid><orcidid>https://orcid.org/0000-0001-9383-2145</orcidid></search><sort><creationdate>20170901</creationdate><title>Omics-based hybrid prediction in maize</title><author>Westhues, Matthias ; Schrag, Tobias A. ; Heuer, Claas ; Thaller, Georg ; Utz, H. Friedrich ; Schipprack, Wolfgang ; Thiemann, Alexander ; Seifert, Felix ; Ehret, Anita ; Schlereth, Armin ; Stitt, Mark ; Nikoloski, Zoran ; Willmitzer, Lothar ; Schön, Chris C. ; Scholten, Stefan ; Melchinger, Albrecht E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-8aaa202250a23bc04eb3b3373cf57798c6364d4ecd75c760135ada68ea1a31db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Chromosome Mapping</topic><topic>Corn</topic><topic>Developmental stages</topic><topic>Dry matter</topic><topic>Epistasis</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Hybrid Vigor</topic><topic>Inbreeding</topic><topic>Information processing</topic><topic>Integration</topic><topic>Life Sciences</topic><topic>Medicinal plants</topic><topic>Metabolomics</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Observations</topic><topic>Offspring</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Precision medicine</topic><topic>Quantitative Trait Loci</topic><topic>Quantitative Trait, Heritable</topic><topic>Transcriptome</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westhues, Matthias</creatorcontrib><creatorcontrib>Schrag, Tobias A.</creatorcontrib><creatorcontrib>Heuer, Claas</creatorcontrib><creatorcontrib>Thaller, Georg</creatorcontrib><creatorcontrib>Utz, H. Friedrich</creatorcontrib><creatorcontrib>Schipprack, Wolfgang</creatorcontrib><creatorcontrib>Thiemann, Alexander</creatorcontrib><creatorcontrib>Seifert, Felix</creatorcontrib><creatorcontrib>Ehret, Anita</creatorcontrib><creatorcontrib>Schlereth, Armin</creatorcontrib><creatorcontrib>Stitt, Mark</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><creatorcontrib>Willmitzer, Lothar</creatorcontrib><creatorcontrib>Schön, Chris C.</creatorcontrib><creatorcontrib>Scholten, Stefan</creatorcontrib><creatorcontrib>Melchinger, Albrecht E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westhues, Matthias</au><au>Schrag, Tobias A.</au><au>Heuer, Claas</au><au>Thaller, Georg</au><au>Utz, H. Friedrich</au><au>Schipprack, Wolfgang</au><au>Thiemann, Alexander</au><au>Seifert, Felix</au><au>Ehret, Anita</au><au>Schlereth, Armin</au><au>Stitt, Mark</au><au>Nikoloski, Zoran</au><au>Willmitzer, Lothar</au><au>Schön, Chris C.</au><au>Scholten, Stefan</au><au>Melchinger, Albrecht E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Omics-based hybrid prediction in maize</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>130</volume><issue>9</issue><spage>1927</spage><epage>1939</epage><pages>1927-1939</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits
.
Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28647896</pmid><doi>10.1007/s00122-017-2934-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2671-6763</orcidid><orcidid>https://orcid.org/0000-0001-7025-6632</orcidid><orcidid>https://orcid.org/0000-0002-6782-2039</orcidid><orcidid>https://orcid.org/0000-0002-2241-0778</orcidid><orcidid>https://orcid.org/0000-0003-4624-2403</orcidid><orcidid>https://orcid.org/0000-0003-3297-825X</orcidid><orcidid>https://orcid.org/0000-0002-4900-1763</orcidid><orcidid>https://orcid.org/0000-0002-1863-8745</orcidid><orcidid>https://orcid.org/0000-0001-8670-0857</orcidid><orcidid>https://orcid.org/0000-0001-9383-2145</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2017-09, Vol.130 (9), p.1927-1939 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_1913832440 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Agriculture Biochemistry Biomedical and Life Sciences Biotechnology Breeding Chromosome Mapping Corn Developmental stages Dry matter Epistasis Genetic aspects Genomics Hybrid Vigor Inbreeding Information processing Integration Life Sciences Medicinal plants Metabolomics Methods Models, Genetic Observations Offspring Original Article Phenotype Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Precision medicine Quantitative Trait Loci Quantitative Trait, Heritable Transcriptome Zea mays - genetics |
title | Omics-based hybrid prediction in maize |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Omics-based%20hybrid%20prediction%20in%20maize&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Westhues,%20Matthias&rft.date=2017-09-01&rft.volume=130&rft.issue=9&rft.spage=1927&rft.epage=1939&rft.pages=1927-1939&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-2934-0&rft_dat=%3Cgale_proqu%3EA501402382%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930727680&rft_id=info:pmid/28647896&rft_galeid=A501402382&rfr_iscdi=true |