Omics-based hybrid prediction in maize

Key message Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits . Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2017-09, Vol.130 (9), p.1927-1939
Hauptverfasser: Westhues, Matthias, Schrag, Tobias A., Heuer, Claas, Thaller, Georg, Utz, H. Friedrich, Schipprack, Wolfgang, Thiemann, Alexander, Seifert, Felix, Ehret, Anita, Schlereth, Armin, Stitt, Mark, Nikoloski, Zoran, Willmitzer, Lothar, Schön, Chris C., Scholten, Stefan, Melchinger, Albrecht E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1939
container_issue 9
container_start_page 1927
container_title Theoretical and applied genetics
container_volume 130
creator Westhues, Matthias
Schrag, Tobias A.
Heuer, Claas
Thaller, Georg
Utz, H. Friedrich
Schipprack, Wolfgang
Thiemann, Alexander
Seifert, Felix
Ehret, Anita
Schlereth, Armin
Stitt, Mark
Nikoloski, Zoran
Willmitzer, Lothar
Schön, Chris C.
Scholten, Stefan
Melchinger, Albrecht E.
description Key message Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits . Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.
doi_str_mv 10.1007/s00122-017-2934-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1913832440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501402382</galeid><sourcerecordid>A501402382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-8aaa202250a23bc04eb3b3373cf57798c6364d4ecd75c760135ada68ea1a31db3</originalsourceid><addsrcrecordid>eNp1kdFLHDEQxkOp1OvpH9CXclAo9iHnZJLd7D2KaBUEwdbnkE1mr5Hb3WuyC9W_3hyn4hUlD4HM7_tmJh9jXwTMBYA-TgACkYPQHBdScfjAJkJJ5IgKP7IJgAJe6AL32eeU7gAAC5Cf2D5WpdLVopyw79dtcInXNpGf_bmvY_CzdSQf3BD6bha6WWvDAx2wvcauEh0-3VN2e372-_SCX13_vDw9ueKuEOXAK2stAuYuFmXtQFEtaym1dE2h9aJypSyVV-S8LpwuQcjCeltWZIWVwtdyyo62vuvY_x0pDaYNydFqZTvqx2TEQshKolKQ0W__oXf9GLs8XaYkaNRl9Ypa2hWZ0DX9EK3bmJqTAoQClBVmav4GlY-n_D19R03I7zuCHzuCzAz0b1jaMSVz-etmlxVb1sU-pUiNWcfQ2nhvBJhNjmabo8k5mk2OZjP216flxrol_6J4Di4DuAVSLnVLiq-2f9f1EVIQomM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930727680</pqid></control><display><type>article</type><title>Omics-based hybrid prediction in maize</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Westhues, Matthias ; Schrag, Tobias A. ; Heuer, Claas ; Thaller, Georg ; Utz, H. Friedrich ; Schipprack, Wolfgang ; Thiemann, Alexander ; Seifert, Felix ; Ehret, Anita ; Schlereth, Armin ; Stitt, Mark ; Nikoloski, Zoran ; Willmitzer, Lothar ; Schön, Chris C. ; Scholten, Stefan ; Melchinger, Albrecht E.</creator><creatorcontrib>Westhues, Matthias ; Schrag, Tobias A. ; Heuer, Claas ; Thaller, Georg ; Utz, H. Friedrich ; Schipprack, Wolfgang ; Thiemann, Alexander ; Seifert, Felix ; Ehret, Anita ; Schlereth, Armin ; Stitt, Mark ; Nikoloski, Zoran ; Willmitzer, Lothar ; Schön, Chris C. ; Scholten, Stefan ; Melchinger, Albrecht E.</creatorcontrib><description>Key message Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits . Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-2934-0</identifier><identifier>PMID: 28647896</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Breeding ; Chromosome Mapping ; Corn ; Developmental stages ; Dry matter ; Epistasis ; Genetic aspects ; Genomics ; Hybrid Vigor ; Inbreeding ; Information processing ; Integration ; Life Sciences ; Medicinal plants ; Metabolomics ; Methods ; Models, Genetic ; Observations ; Offspring ; Original Article ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Precision medicine ; Quantitative Trait Loci ; Quantitative Trait, Heritable ; Transcriptome ; Zea mays - genetics</subject><ispartof>Theoretical and applied genetics, 2017-09, Vol.130 (9), p.1927-1939</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-8aaa202250a23bc04eb3b3373cf57798c6364d4ecd75c760135ada68ea1a31db3</citedby><cites>FETCH-LOGICAL-c516t-8aaa202250a23bc04eb3b3373cf57798c6364d4ecd75c760135ada68ea1a31db3</cites><orcidid>0000-0003-2671-6763 ; 0000-0001-7025-6632 ; 0000-0002-6782-2039 ; 0000-0002-2241-0778 ; 0000-0003-4624-2403 ; 0000-0003-3297-825X ; 0000-0002-4900-1763 ; 0000-0002-1863-8745 ; 0000-0001-8670-0857 ; 0000-0001-9383-2145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-2934-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-2934-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28647896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westhues, Matthias</creatorcontrib><creatorcontrib>Schrag, Tobias A.</creatorcontrib><creatorcontrib>Heuer, Claas</creatorcontrib><creatorcontrib>Thaller, Georg</creatorcontrib><creatorcontrib>Utz, H. Friedrich</creatorcontrib><creatorcontrib>Schipprack, Wolfgang</creatorcontrib><creatorcontrib>Thiemann, Alexander</creatorcontrib><creatorcontrib>Seifert, Felix</creatorcontrib><creatorcontrib>Ehret, Anita</creatorcontrib><creatorcontrib>Schlereth, Armin</creatorcontrib><creatorcontrib>Stitt, Mark</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><creatorcontrib>Willmitzer, Lothar</creatorcontrib><creatorcontrib>Schön, Chris C.</creatorcontrib><creatorcontrib>Scholten, Stefan</creatorcontrib><creatorcontrib>Melchinger, Albrecht E.</creatorcontrib><title>Omics-based hybrid prediction in maize</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits . Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.</description><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Chromosome Mapping</subject><subject>Corn</subject><subject>Developmental stages</subject><subject>Dry matter</subject><subject>Epistasis</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Hybrid Vigor</subject><subject>Inbreeding</subject><subject>Information processing</subject><subject>Integration</subject><subject>Life Sciences</subject><subject>Medicinal plants</subject><subject>Metabolomics</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Observations</subject><subject>Offspring</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Precision medicine</subject><subject>Quantitative Trait Loci</subject><subject>Quantitative Trait, Heritable</subject><subject>Transcriptome</subject><subject>Zea mays - genetics</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kdFLHDEQxkOp1OvpH9CXclAo9iHnZJLd7D2KaBUEwdbnkE1mr5Hb3WuyC9W_3hyn4hUlD4HM7_tmJh9jXwTMBYA-TgACkYPQHBdScfjAJkJJ5IgKP7IJgAJe6AL32eeU7gAAC5Cf2D5WpdLVopyw79dtcInXNpGf_bmvY_CzdSQf3BD6bha6WWvDAx2wvcauEh0-3VN2e372-_SCX13_vDw9ueKuEOXAK2stAuYuFmXtQFEtaym1dE2h9aJypSyVV-S8LpwuQcjCeltWZIWVwtdyyo62vuvY_x0pDaYNydFqZTvqx2TEQshKolKQ0W__oXf9GLs8XaYkaNRl9Ypa2hWZ0DX9EK3bmJqTAoQClBVmav4GlY-n_D19R03I7zuCHzuCzAz0b1jaMSVz-etmlxVb1sU-pUiNWcfQ2nhvBJhNjmabo8k5mk2OZjP216flxrol_6J4Di4DuAVSLnVLiq-2f9f1EVIQomM</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Westhues, Matthias</creator><creator>Schrag, Tobias A.</creator><creator>Heuer, Claas</creator><creator>Thaller, Georg</creator><creator>Utz, H. Friedrich</creator><creator>Schipprack, Wolfgang</creator><creator>Thiemann, Alexander</creator><creator>Seifert, Felix</creator><creator>Ehret, Anita</creator><creator>Schlereth, Armin</creator><creator>Stitt, Mark</creator><creator>Nikoloski, Zoran</creator><creator>Willmitzer, Lothar</creator><creator>Schön, Chris C.</creator><creator>Scholten, Stefan</creator><creator>Melchinger, Albrecht E.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2671-6763</orcidid><orcidid>https://orcid.org/0000-0001-7025-6632</orcidid><orcidid>https://orcid.org/0000-0002-6782-2039</orcidid><orcidid>https://orcid.org/0000-0002-2241-0778</orcidid><orcidid>https://orcid.org/0000-0003-4624-2403</orcidid><orcidid>https://orcid.org/0000-0003-3297-825X</orcidid><orcidid>https://orcid.org/0000-0002-4900-1763</orcidid><orcidid>https://orcid.org/0000-0002-1863-8745</orcidid><orcidid>https://orcid.org/0000-0001-8670-0857</orcidid><orcidid>https://orcid.org/0000-0001-9383-2145</orcidid></search><sort><creationdate>20170901</creationdate><title>Omics-based hybrid prediction in maize</title><author>Westhues, Matthias ; Schrag, Tobias A. ; Heuer, Claas ; Thaller, Georg ; Utz, H. Friedrich ; Schipprack, Wolfgang ; Thiemann, Alexander ; Seifert, Felix ; Ehret, Anita ; Schlereth, Armin ; Stitt, Mark ; Nikoloski, Zoran ; Willmitzer, Lothar ; Schön, Chris C. ; Scholten, Stefan ; Melchinger, Albrecht E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-8aaa202250a23bc04eb3b3373cf57798c6364d4ecd75c760135ada68ea1a31db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Chromosome Mapping</topic><topic>Corn</topic><topic>Developmental stages</topic><topic>Dry matter</topic><topic>Epistasis</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Hybrid Vigor</topic><topic>Inbreeding</topic><topic>Information processing</topic><topic>Integration</topic><topic>Life Sciences</topic><topic>Medicinal plants</topic><topic>Metabolomics</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Observations</topic><topic>Offspring</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Precision medicine</topic><topic>Quantitative Trait Loci</topic><topic>Quantitative Trait, Heritable</topic><topic>Transcriptome</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westhues, Matthias</creatorcontrib><creatorcontrib>Schrag, Tobias A.</creatorcontrib><creatorcontrib>Heuer, Claas</creatorcontrib><creatorcontrib>Thaller, Georg</creatorcontrib><creatorcontrib>Utz, H. Friedrich</creatorcontrib><creatorcontrib>Schipprack, Wolfgang</creatorcontrib><creatorcontrib>Thiemann, Alexander</creatorcontrib><creatorcontrib>Seifert, Felix</creatorcontrib><creatorcontrib>Ehret, Anita</creatorcontrib><creatorcontrib>Schlereth, Armin</creatorcontrib><creatorcontrib>Stitt, Mark</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><creatorcontrib>Willmitzer, Lothar</creatorcontrib><creatorcontrib>Schön, Chris C.</creatorcontrib><creatorcontrib>Scholten, Stefan</creatorcontrib><creatorcontrib>Melchinger, Albrecht E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westhues, Matthias</au><au>Schrag, Tobias A.</au><au>Heuer, Claas</au><au>Thaller, Georg</au><au>Utz, H. Friedrich</au><au>Schipprack, Wolfgang</au><au>Thiemann, Alexander</au><au>Seifert, Felix</au><au>Ehret, Anita</au><au>Schlereth, Armin</au><au>Stitt, Mark</au><au>Nikoloski, Zoran</au><au>Willmitzer, Lothar</au><au>Schön, Chris C.</au><au>Scholten, Stefan</au><au>Melchinger, Albrecht E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Omics-based hybrid prediction in maize</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>130</volume><issue>9</issue><spage>1927</spage><epage>1939</epage><pages>1927-1939</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits . Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28647896</pmid><doi>10.1007/s00122-017-2934-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2671-6763</orcidid><orcidid>https://orcid.org/0000-0001-7025-6632</orcidid><orcidid>https://orcid.org/0000-0002-6782-2039</orcidid><orcidid>https://orcid.org/0000-0002-2241-0778</orcidid><orcidid>https://orcid.org/0000-0003-4624-2403</orcidid><orcidid>https://orcid.org/0000-0003-3297-825X</orcidid><orcidid>https://orcid.org/0000-0002-4900-1763</orcidid><orcidid>https://orcid.org/0000-0002-1863-8745</orcidid><orcidid>https://orcid.org/0000-0001-8670-0857</orcidid><orcidid>https://orcid.org/0000-0001-9383-2145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2017-09, Vol.130 (9), p.1927-1939
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_1913832440
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Agriculture
Biochemistry
Biomedical and Life Sciences
Biotechnology
Breeding
Chromosome Mapping
Corn
Developmental stages
Dry matter
Epistasis
Genetic aspects
Genomics
Hybrid Vigor
Inbreeding
Information processing
Integration
Life Sciences
Medicinal plants
Metabolomics
Methods
Models, Genetic
Observations
Offspring
Original Article
Phenotype
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Precision medicine
Quantitative Trait Loci
Quantitative Trait, Heritable
Transcriptome
Zea mays - genetics
title Omics-based hybrid prediction in maize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Omics-based%20hybrid%20prediction%20in%20maize&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Westhues,%20Matthias&rft.date=2017-09-01&rft.volume=130&rft.issue=9&rft.spage=1927&rft.epage=1939&rft.pages=1927-1939&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-2934-0&rft_dat=%3Cgale_proqu%3EA501402382%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930727680&rft_id=info:pmid/28647896&rft_galeid=A501402382&rfr_iscdi=true