Prediction in ecology: a first-principles framework

Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological applications 2017-10, Vol.27 (7), p.2048-2060
1. Verfasser: Dietze, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2060
container_issue 7
container_start_page 2048
container_title Ecological applications
container_volume 27
creator Dietze, Michael C.
description Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time.
doi_str_mv 10.1002/eap.1589
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1913394215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26600049</jstor_id><sourcerecordid>26600049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3779-8c861d1ccdca512e55c2dcdbbde2409af590926747da3bc5f1c95dfafcbd3d53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EolCQ-AOgjCwpPjt2YraqKh9SJTp0txzbQS5JHOxUVf89qVo-Fm65G56eTg-hG8ATwJg8WNVNgBXiBF2AoCJlrCCnw40ZpDjnMEKXMa7xMISQczQiBc84B7hAdBmscbp3vk1cm1jta_--e0xUUrkQ-7QLrtWuq21MqqAau_Xh4wqdVaqO9vq4x2j1NF_NXtLF2_PrbLpINc1zkRa64GBAa6MVA2IZ08RoU5bGkgwLVTGBBeF5lhtFS80q0IKZSlW6NNQwOkb3B20X_OfGxl42Lmpb16q1fhMlCKBUZAT-oDr4GIOt5PB3o8JOApb7QnIoJPeFBvTuaN2UjTU_4HeSAUgPwNbVdvevSM6ny6Pw9sCvY-_Dr4_zIXcm6BdjbHkZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913394215</pqid></control><display><type>article</type><title>Prediction in ecology: a first-principles framework</title><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Online Library All Journals</source><creator>Dietze, Michael C.</creator><creatorcontrib>Dietze, Michael C.</creatorcontrib><description>Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1002/eap.1589</identifier><identifier>PMID: 28646611</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>ecological forecasting ; endogenous ; exogenous ; net ecosystem exchange ; parameter ; process error ; random effects ; scale ; stability ; uncertainty</subject><ispartof>Ecological applications, 2017-10, Vol.27 (7), p.2048-2060</ispartof><rights>2017 The Ecological Society of America</rights><rights>2017 The Authors. published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.</rights><rights>2017 by the Ecological Society of America.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3779-8c861d1ccdca512e55c2dcdbbde2409af590926747da3bc5f1c95dfafcbd3d53</citedby><cites>FETCH-LOGICAL-c3779-8c861d1ccdca512e55c2dcdbbde2409af590926747da3bc5f1c95dfafcbd3d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26600049$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26600049$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28646611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietze, Michael C.</creatorcontrib><title>Prediction in ecology: a first-principles framework</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time.</description><subject>ecological forecasting</subject><subject>endogenous</subject><subject>exogenous</subject><subject>net ecosystem exchange</subject><subject>parameter</subject><subject>process error</subject><subject>random effects</subject><subject>scale</subject><subject>stability</subject><subject>uncertainty</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD1PwzAQQC0EolCQ-AOgjCwpPjt2YraqKh9SJTp0txzbQS5JHOxUVf89qVo-Fm65G56eTg-hG8ATwJg8WNVNgBXiBF2AoCJlrCCnw40ZpDjnMEKXMa7xMISQczQiBc84B7hAdBmscbp3vk1cm1jta_--e0xUUrkQ-7QLrtWuq21MqqAau_Xh4wqdVaqO9vq4x2j1NF_NXtLF2_PrbLpINc1zkRa64GBAa6MVA2IZ08RoU5bGkgwLVTGBBeF5lhtFS80q0IKZSlW6NNQwOkb3B20X_OfGxl42Lmpb16q1fhMlCKBUZAT-oDr4GIOt5PB3o8JOApb7QnIoJPeFBvTuaN2UjTU_4HeSAUgPwNbVdvevSM6ny6Pw9sCvY-_Dr4_zIXcm6BdjbHkZ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Dietze, Michael C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Prediction in ecology: a first-principles framework</title><author>Dietze, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3779-8c861d1ccdca512e55c2dcdbbde2409af590926747da3bc5f1c95dfafcbd3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ecological forecasting</topic><topic>endogenous</topic><topic>exogenous</topic><topic>net ecosystem exchange</topic><topic>parameter</topic><topic>process error</topic><topic>random effects</topic><topic>scale</topic><topic>stability</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietze, Michael C.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietze, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction in ecology: a first-principles framework</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>27</volume><issue>7</issue><spage>2048</spage><epage>2060</epage><pages>2048-2060</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><abstract>Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28646611</pmid><doi>10.1002/eap.1589</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-0761
ispartof Ecological applications, 2017-10, Vol.27 (7), p.2048-2060
issn 1051-0761
1939-5582
language eng
recordid cdi_proquest_miscellaneous_1913394215
source JSTOR Archive Collection A-Z Listing; Wiley Online Library All Journals
subjects ecological forecasting
endogenous
exogenous
net ecosystem exchange
parameter
process error
random effects
scale
stability
uncertainty
title Prediction in ecology: a first-principles framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20in%20ecology:%20a%20first-principles%20framework&rft.jtitle=Ecological%20applications&rft.au=Dietze,%20Michael%20C.&rft.date=2017-10-01&rft.volume=27&rft.issue=7&rft.spage=2048&rft.epage=2060&rft.pages=2048-2060&rft.issn=1051-0761&rft.eissn=1939-5582&rft_id=info:doi/10.1002/eap.1589&rft_dat=%3Cjstor_proqu%3E26600049%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913394215&rft_id=info:pmid/28646611&rft_jstor_id=26600049&rfr_iscdi=true