Prediction in ecology: a first-principles framework
Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework ar...
Gespeichert in:
Veröffentlicht in: | Ecological applications 2017-10, Vol.27 (7), p.2048-2060 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2060 |
---|---|
container_issue | 7 |
container_start_page | 2048 |
container_title | Ecological applications |
container_volume | 27 |
creator | Dietze, Michael C. |
description | Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time. |
doi_str_mv | 10.1002/eap.1589 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1913394215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26600049</jstor_id><sourcerecordid>26600049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3779-8c861d1ccdca512e55c2dcdbbde2409af590926747da3bc5f1c95dfafcbd3d53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EolCQ-AOgjCwpPjt2YraqKh9SJTp0txzbQS5JHOxUVf89qVo-Fm65G56eTg-hG8ATwJg8WNVNgBXiBF2AoCJlrCCnw40ZpDjnMEKXMa7xMISQczQiBc84B7hAdBmscbp3vk1cm1jta_--e0xUUrkQ-7QLrtWuq21MqqAau_Xh4wqdVaqO9vq4x2j1NF_NXtLF2_PrbLpINc1zkRa64GBAa6MVA2IZ08RoU5bGkgwLVTGBBeF5lhtFS80q0IKZSlW6NNQwOkb3B20X_OfGxl42Lmpb16q1fhMlCKBUZAT-oDr4GIOt5PB3o8JOApb7QnIoJPeFBvTuaN2UjTU_4HeSAUgPwNbVdvevSM6ny6Pw9sCvY-_Dr4_zIXcm6BdjbHkZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913394215</pqid></control><display><type>article</type><title>Prediction in ecology: a first-principles framework</title><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Online Library All Journals</source><creator>Dietze, Michael C.</creator><creatorcontrib>Dietze, Michael C.</creatorcontrib><description>Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1002/eap.1589</identifier><identifier>PMID: 28646611</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>ecological forecasting ; endogenous ; exogenous ; net ecosystem exchange ; parameter ; process error ; random effects ; scale ; stability ; uncertainty</subject><ispartof>Ecological applications, 2017-10, Vol.27 (7), p.2048-2060</ispartof><rights>2017 The Ecological Society of America</rights><rights>2017 The Authors. published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.</rights><rights>2017 by the Ecological Society of America.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3779-8c861d1ccdca512e55c2dcdbbde2409af590926747da3bc5f1c95dfafcbd3d53</citedby><cites>FETCH-LOGICAL-c3779-8c861d1ccdca512e55c2dcdbbde2409af590926747da3bc5f1c95dfafcbd3d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26600049$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26600049$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28646611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietze, Michael C.</creatorcontrib><title>Prediction in ecology: a first-principles framework</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time.</description><subject>ecological forecasting</subject><subject>endogenous</subject><subject>exogenous</subject><subject>net ecosystem exchange</subject><subject>parameter</subject><subject>process error</subject><subject>random effects</subject><subject>scale</subject><subject>stability</subject><subject>uncertainty</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD1PwzAQQC0EolCQ-AOgjCwpPjt2YraqKh9SJTp0txzbQS5JHOxUVf89qVo-Fm65G56eTg-hG8ATwJg8WNVNgBXiBF2AoCJlrCCnw40ZpDjnMEKXMa7xMISQczQiBc84B7hAdBmscbp3vk1cm1jta_--e0xUUrkQ-7QLrtWuq21MqqAau_Xh4wqdVaqO9vq4x2j1NF_NXtLF2_PrbLpINc1zkRa64GBAa6MVA2IZ08RoU5bGkgwLVTGBBeF5lhtFS80q0IKZSlW6NNQwOkb3B20X_OfGxl42Lmpb16q1fhMlCKBUZAT-oDr4GIOt5PB3o8JOApb7QnIoJPeFBvTuaN2UjTU_4HeSAUgPwNbVdvevSM6ny6Pw9sCvY-_Dr4_zIXcm6BdjbHkZ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Dietze, Michael C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Prediction in ecology: a first-principles framework</title><author>Dietze, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3779-8c861d1ccdca512e55c2dcdbbde2409af590926747da3bc5f1c95dfafcbd3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ecological forecasting</topic><topic>endogenous</topic><topic>exogenous</topic><topic>net ecosystem exchange</topic><topic>parameter</topic><topic>process error</topic><topic>random effects</topic><topic>scale</topic><topic>stability</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietze, Michael C.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietze, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction in ecology: a first-principles framework</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>27</volume><issue>7</issue><spage>2048</spage><epage>2060</epage><pages>2048-2060</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><abstract>Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28646611</pmid><doi>10.1002/eap.1589</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-0761 |
ispartof | Ecological applications, 2017-10, Vol.27 (7), p.2048-2060 |
issn | 1051-0761 1939-5582 |
language | eng |
recordid | cdi_proquest_miscellaneous_1913394215 |
source | JSTOR Archive Collection A-Z Listing; Wiley Online Library All Journals |
subjects | ecological forecasting endogenous exogenous net ecosystem exchange parameter process error random effects scale stability uncertainty |
title | Prediction in ecology: a first-principles framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20in%20ecology:%20a%20first-principles%20framework&rft.jtitle=Ecological%20applications&rft.au=Dietze,%20Michael%20C.&rft.date=2017-10-01&rft.volume=27&rft.issue=7&rft.spage=2048&rft.epage=2060&rft.pages=2048-2060&rft.issn=1051-0761&rft.eissn=1939-5582&rft_id=info:doi/10.1002/eap.1589&rft_dat=%3Cjstor_proqu%3E26600049%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913394215&rft_id=info:pmid/28646611&rft_jstor_id=26600049&rfr_iscdi=true |