Magnetic resonance spin–spin relaxation time estimation in a rat model of fatty liver disease

Purpose To compare mono‐ and bi‐exponential relaxation model equations to discriminate between normal and fatty liver disease. Materials and Methods Six rats on a choline deficient amino acid modified (CDAA) diet and six on normal chow were studied. Multiple spin echo images with increasing echo tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2018-02, Vol.47 (2), p.468-476
Hauptverfasser: Alghamdi, Sami, Sinclair, Benjamin, Cowin, Gary, Brereton, Ian, Tesiram, Yasvir A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 2
container_start_page 468
container_title Journal of magnetic resonance imaging
container_volume 47
creator Alghamdi, Sami
Sinclair, Benjamin
Cowin, Gary
Brereton, Ian
Tesiram, Yasvir A.
description Purpose To compare mono‐ and bi‐exponential relaxation model equations to discriminate between normal and fatty liver disease. Materials and Methods Six rats on a choline deficient amino acid modified (CDAA) diet and six on normal chow were studied. Multiple spin echo images with increasing echo times (TEs) were collected at 9.4T. Pixel‐wise T2 maps were generated using mono‐exponential decay function to calculate T2M, and a bi‐exponential to calculate, short T2 component (T2S), long T2 component (T2L), and fractions of these components (ρS, ρL), respectively. Statistical F‐tests and Akaike's information criterion (AIC) were used to assess the relative performance of the two models. Results F‐test and AIC showed that in the CDAA group, T2 bi‐exponential model described the signal of T2 weighted imaging of the liver better than the mono‐exponential model. Controls were best described by the mono‐exponential model. Mean values for T2M, T2L, T2S, ρS, ρL were 31.2 ± 0.7 ms, 72.8 ± 3.3 ms, 8.2 ± 0.6 ms,71.2 ± 2.1%, 30.4 ± 1.3%, respectively, in CDAA rats, compared with 18.8 ± 0.5 ms, 32.3 ± 0.7 ms, 9.2 ± 1.8 ms, 79 ± 2%, 21.0 ± 1.1% in controls. Conclusion In the fatty liver of CDAA rats we have shown that T2 weighted images fit the bi‐exponential model better than mono‐exponential decays thus providing a better description of the data. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:468–476.
doi_str_mv 10.1002/jmri.25786
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1912614124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912614124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3526-5886b6f52f25e904641d2d4115132a1af5fa8f0ee171b3e31d3e6e6e0a64bf2b3</originalsourceid><addsrcrecordid>eNp9kM1OGzEUha0K1IS0Gx4AWWJTIQ342mPHs6xQC1SJkFC7tjwz18jR_AR7Qsmu79A35ElwmJRFF-guzrX96ej4EHIM7BwY4xerNvhzLudafSBTkJxnXGp1kHYmRQaazSfkKMYVY6wocvmRTLhWouAqnxKztPcdDr6iAWPf2a5CGte-e_7zdyfptrFPdvB9RwffIsWYZDynV0uDHWjb19jQ3lFnh2FLG_-IgdY-oo34iRw620T8vNcZ-fX928_L62xxe3Vz-XWRVUJylUmtVamc5I5LLFiucqh5nQNIENyCddJZ7RgizKEUKKAWqNIwq_LS8VLMyJfRdx36h01KaVofK2wa22G_iQYK4Apy4HlCT_9DV_0mdCldovRc8EIrlaizkapCH2NAZ9Yh_TxsDTCzq93sajevtSf4ZG-5KVus39B_PScARuC3b3D7jpX5sby7GU1fADhQjhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987329866</pqid></control><display><type>article</type><title>Magnetic resonance spin–spin relaxation time estimation in a rat model of fatty liver disease</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library</source><creator>Alghamdi, Sami ; Sinclair, Benjamin ; Cowin, Gary ; Brereton, Ian ; Tesiram, Yasvir A.</creator><creatorcontrib>Alghamdi, Sami ; Sinclair, Benjamin ; Cowin, Gary ; Brereton, Ian ; Tesiram, Yasvir A.</creatorcontrib><description>Purpose To compare mono‐ and bi‐exponential relaxation model equations to discriminate between normal and fatty liver disease. Materials and Methods Six rats on a choline deficient amino acid modified (CDAA) diet and six on normal chow were studied. Multiple spin echo images with increasing echo times (TEs) were collected at 9.4T. Pixel‐wise T2 maps were generated using mono‐exponential decay function to calculate T2M, and a bi‐exponential to calculate, short T2 component (T2S), long T2 component (T2L), and fractions of these components (ρS, ρL), respectively. Statistical F‐tests and Akaike's information criterion (AIC) were used to assess the relative performance of the two models. Results F‐test and AIC showed that in the CDAA group, T2 bi‐exponential model described the signal of T2 weighted imaging of the liver better than the mono‐exponential model. Controls were best described by the mono‐exponential model. Mean values for T2M, T2L, T2S, ρS, ρL were 31.2 ± 0.7 ms, 72.8 ± 3.3 ms, 8.2 ± 0.6 ms,71.2 ± 2.1%, 30.4 ± 1.3%, respectively, in CDAA rats, compared with 18.8 ± 0.5 ms, 32.3 ± 0.7 ms, 9.2 ± 1.8 ms, 79 ± 2%, 21.0 ± 1.1% in controls. Conclusion In the fatty liver of CDAA rats we have shown that T2 weighted images fit the bi‐exponential model better than mono‐exponential decays thus providing a better description of the data. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:468–476.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.25786</identifier><identifier>PMID: 28639264</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Animal models ; Choline ; choline deficient rat ; fat fraction ; Fatty liver ; fatty liver disease ; Liver ; Liver diseases ; Magnetic induction ; Magnetic resonance ; Magnetic resonance imaging ; Mathematical models ; MRI ; Rats ; Relaxation time ; Statistical analysis ; T2 relaxation; mono‐ &amp; bi‐exponential function</subject><ispartof>Journal of magnetic resonance imaging, 2018-02, Vol.47 (2), p.468-476</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><rights>2018 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3526-5886b6f52f25e904641d2d4115132a1af5fa8f0ee171b3e31d3e6e6e0a64bf2b3</cites><orcidid>0000-0003-3008-2927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.25786$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.25786$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28639264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alghamdi, Sami</creatorcontrib><creatorcontrib>Sinclair, Benjamin</creatorcontrib><creatorcontrib>Cowin, Gary</creatorcontrib><creatorcontrib>Brereton, Ian</creatorcontrib><creatorcontrib>Tesiram, Yasvir A.</creatorcontrib><title>Magnetic resonance spin–spin relaxation time estimation in a rat model of fatty liver disease</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Purpose To compare mono‐ and bi‐exponential relaxation model equations to discriminate between normal and fatty liver disease. Materials and Methods Six rats on a choline deficient amino acid modified (CDAA) diet and six on normal chow were studied. Multiple spin echo images with increasing echo times (TEs) were collected at 9.4T. Pixel‐wise T2 maps were generated using mono‐exponential decay function to calculate T2M, and a bi‐exponential to calculate, short T2 component (T2S), long T2 component (T2L), and fractions of these components (ρS, ρL), respectively. Statistical F‐tests and Akaike's information criterion (AIC) were used to assess the relative performance of the two models. Results F‐test and AIC showed that in the CDAA group, T2 bi‐exponential model described the signal of T2 weighted imaging of the liver better than the mono‐exponential model. Controls were best described by the mono‐exponential model. Mean values for T2M, T2L, T2S, ρS, ρL were 31.2 ± 0.7 ms, 72.8 ± 3.3 ms, 8.2 ± 0.6 ms,71.2 ± 2.1%, 30.4 ± 1.3%, respectively, in CDAA rats, compared with 18.8 ± 0.5 ms, 32.3 ± 0.7 ms, 9.2 ± 1.8 ms, 79 ± 2%, 21.0 ± 1.1% in controls. Conclusion In the fatty liver of CDAA rats we have shown that T2 weighted images fit the bi‐exponential model better than mono‐exponential decays thus providing a better description of the data. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:468–476.</description><subject>Amino acids</subject><subject>Animal models</subject><subject>Choline</subject><subject>choline deficient rat</subject><subject>fat fraction</subject><subject>Fatty liver</subject><subject>fatty liver disease</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Magnetic induction</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>MRI</subject><subject>Rats</subject><subject>Relaxation time</subject><subject>Statistical analysis</subject><subject>T2 relaxation; mono‐ &amp; bi‐exponential function</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OGzEUha0K1IS0Gx4AWWJTIQ342mPHs6xQC1SJkFC7tjwz18jR_AR7Qsmu79A35ElwmJRFF-guzrX96ej4EHIM7BwY4xerNvhzLudafSBTkJxnXGp1kHYmRQaazSfkKMYVY6wocvmRTLhWouAqnxKztPcdDr6iAWPf2a5CGte-e_7zdyfptrFPdvB9RwffIsWYZDynV0uDHWjb19jQ3lFnh2FLG_-IgdY-oo34iRw620T8vNcZ-fX928_L62xxe3Vz-XWRVUJylUmtVamc5I5LLFiucqh5nQNIENyCddJZ7RgizKEUKKAWqNIwq_LS8VLMyJfRdx36h01KaVofK2wa22G_iQYK4Apy4HlCT_9DV_0mdCldovRc8EIrlaizkapCH2NAZ9Yh_TxsDTCzq93sajevtSf4ZG-5KVus39B_PScARuC3b3D7jpX5sby7GU1fADhQjhQ</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Alghamdi, Sami</creator><creator>Sinclair, Benjamin</creator><creator>Cowin, Gary</creator><creator>Brereton, Ian</creator><creator>Tesiram, Yasvir A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3008-2927</orcidid></search><sort><creationdate>201802</creationdate><title>Magnetic resonance spin–spin relaxation time estimation in a rat model of fatty liver disease</title><author>Alghamdi, Sami ; Sinclair, Benjamin ; Cowin, Gary ; Brereton, Ian ; Tesiram, Yasvir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3526-5886b6f52f25e904641d2d4115132a1af5fa8f0ee171b3e31d3e6e6e0a64bf2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acids</topic><topic>Animal models</topic><topic>Choline</topic><topic>choline deficient rat</topic><topic>fat fraction</topic><topic>Fatty liver</topic><topic>fatty liver disease</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Magnetic induction</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>MRI</topic><topic>Rats</topic><topic>Relaxation time</topic><topic>Statistical analysis</topic><topic>T2 relaxation; mono‐ &amp; bi‐exponential function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alghamdi, Sami</creatorcontrib><creatorcontrib>Sinclair, Benjamin</creatorcontrib><creatorcontrib>Cowin, Gary</creatorcontrib><creatorcontrib>Brereton, Ian</creatorcontrib><creatorcontrib>Tesiram, Yasvir A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alghamdi, Sami</au><au>Sinclair, Benjamin</au><au>Cowin, Gary</au><au>Brereton, Ian</au><au>Tesiram, Yasvir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic resonance spin–spin relaxation time estimation in a rat model of fatty liver disease</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2018-02</date><risdate>2018</risdate><volume>47</volume><issue>2</issue><spage>468</spage><epage>476</epage><pages>468-476</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To compare mono‐ and bi‐exponential relaxation model equations to discriminate between normal and fatty liver disease. Materials and Methods Six rats on a choline deficient amino acid modified (CDAA) diet and six on normal chow were studied. Multiple spin echo images with increasing echo times (TEs) were collected at 9.4T. Pixel‐wise T2 maps were generated using mono‐exponential decay function to calculate T2M, and a bi‐exponential to calculate, short T2 component (T2S), long T2 component (T2L), and fractions of these components (ρS, ρL), respectively. Statistical F‐tests and Akaike's information criterion (AIC) were used to assess the relative performance of the two models. Results F‐test and AIC showed that in the CDAA group, T2 bi‐exponential model described the signal of T2 weighted imaging of the liver better than the mono‐exponential model. Controls were best described by the mono‐exponential model. Mean values for T2M, T2L, T2S, ρS, ρL were 31.2 ± 0.7 ms, 72.8 ± 3.3 ms, 8.2 ± 0.6 ms,71.2 ± 2.1%, 30.4 ± 1.3%, respectively, in CDAA rats, compared with 18.8 ± 0.5 ms, 32.3 ± 0.7 ms, 9.2 ± 1.8 ms, 79 ± 2%, 21.0 ± 1.1% in controls. Conclusion In the fatty liver of CDAA rats we have shown that T2 weighted images fit the bi‐exponential model better than mono‐exponential decays thus providing a better description of the data. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:468–476.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28639264</pmid><doi>10.1002/jmri.25786</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3008-2927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2018-02, Vol.47 (2), p.468-476
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_1912614124
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library
subjects Amino acids
Animal models
Choline
choline deficient rat
fat fraction
Fatty liver
fatty liver disease
Liver
Liver diseases
Magnetic induction
Magnetic resonance
Magnetic resonance imaging
Mathematical models
MRI
Rats
Relaxation time
Statistical analysis
T2 relaxation
mono‐ & bi‐exponential function
title Magnetic resonance spin–spin relaxation time estimation in a rat model of fatty liver disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20resonance%20spin%E2%80%93spin%20relaxation%20time%20estimation%20in%20a%20rat%20model%20of%20fatty%20liver%20disease&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Alghamdi,%20Sami&rft.date=2018-02&rft.volume=47&rft.issue=2&rft.spage=468&rft.epage=476&rft.pages=468-476&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.25786&rft_dat=%3Cproquest_cross%3E1912614124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987329866&rft_id=info:pmid/28639264&rfr_iscdi=true