Diversity in Big Data: A Review

Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection task...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Big data 2017-06, Vol.5 (2), p.73-84
Hauptverfasser: Drosou, Marina, Jagadish, H V, Pitoura, Evaggelia, Stoyanovich, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 2
container_start_page 73
container_title Big data
container_volume 5
creator Drosou, Marina
Jagadish, H V
Pitoura, Evaggelia
Stoyanovich, Julia
description Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diversity and fairness, and identify promising directions for future work that will position diversity as an important component of a data-responsible society. We argue that diversity should come to the forefront of our discourse, for reasons that are both ethical-to mitigate the risks of exclusion-and utilitarian, to enable more powerful, accurate, and engaging data analysis and use.
doi_str_mv 10.1089/big.2016.0054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1912193560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912193560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-caa3bf6c7c5d59824c584464220c63b3dd5b196da23fe1d7c27433bcf9bcd3fa3</originalsourceid><addsrcrecordid>eNo9kEtPAjEYRRujEYIs3eos3Qy2_fqYukPwlZCYGE3cNX0NqWEYnA4Q_r1DQO7m3sXJXRyErgkeEVyoexvnI4qJGGHM2RnqUyJkLpj8Pj9tQXpomNIP7iKlYgW5RD1aCKCMQR_dTuMmNCm2uywus8c4z6amNQ_ZOPsImxi2V-iiNIsUhsceoK_np8_Jaz57f3mbjGe5A6Bt7owBWwonHfdcFZQ5XjAmGKXYCbDgPbdECW8olIF46ahkANaVyjoPpYEBujv8rpr6dx1Sq6uYXFgszDLU66SJIpQo4AJ3aH5AXVOn1IRSr5pYmWanCdZ7LbrTovda9F5Lx98cr9e2Cv5E_0uAP1OdWx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912193560</pqid></control><display><type>article</type><title>Diversity in Big Data: A Review</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Drosou, Marina ; Jagadish, H V ; Pitoura, Evaggelia ; Stoyanovich, Julia</creator><creatorcontrib>Drosou, Marina ; Jagadish, H V ; Pitoura, Evaggelia ; Stoyanovich, Julia</creatorcontrib><description>Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diversity and fairness, and identify promising directions for future work that will position diversity as an important component of a data-responsible society. We argue that diversity should come to the forefront of our discourse, for reasons that are both ethical-to mitigate the risks of exclusion-and utilitarian, to enable more powerful, accurate, and engaging data analysis and use.</description><identifier>ISSN: 2167-6461</identifier><identifier>EISSN: 2167-647X</identifier><identifier>DOI: 10.1089/big.2016.0054</identifier><identifier>PMID: 28632443</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Crowdsourcing ; Data Interpretation, Statistical ; Empirical Research ; Models, Statistical ; Personnel Selection</subject><ispartof>Big data, 2017-06, Vol.5 (2), p.73-84</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-caa3bf6c7c5d59824c584464220c63b3dd5b196da23fe1d7c27433bcf9bcd3fa3</citedby><cites>FETCH-LOGICAL-c332t-caa3bf6c7c5d59824c584464220c63b3dd5b196da23fe1d7c27433bcf9bcd3fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28632443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drosou, Marina</creatorcontrib><creatorcontrib>Jagadish, H V</creatorcontrib><creatorcontrib>Pitoura, Evaggelia</creatorcontrib><creatorcontrib>Stoyanovich, Julia</creatorcontrib><title>Diversity in Big Data: A Review</title><title>Big data</title><addtitle>Big Data</addtitle><description>Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diversity and fairness, and identify promising directions for future work that will position diversity as an important component of a data-responsible society. We argue that diversity should come to the forefront of our discourse, for reasons that are both ethical-to mitigate the risks of exclusion-and utilitarian, to enable more powerful, accurate, and engaging data analysis and use.</description><subject>Algorithms</subject><subject>Crowdsourcing</subject><subject>Data Interpretation, Statistical</subject><subject>Empirical Research</subject><subject>Models, Statistical</subject><subject>Personnel Selection</subject><issn>2167-6461</issn><issn>2167-647X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPAjEYRRujEYIs3eos3Qy2_fqYukPwlZCYGE3cNX0NqWEYnA4Q_r1DQO7m3sXJXRyErgkeEVyoexvnI4qJGGHM2RnqUyJkLpj8Pj9tQXpomNIP7iKlYgW5RD1aCKCMQR_dTuMmNCm2uywus8c4z6amNQ_ZOPsImxi2V-iiNIsUhsceoK_np8_Jaz57f3mbjGe5A6Bt7owBWwonHfdcFZQ5XjAmGKXYCbDgPbdECW8olIF46ahkANaVyjoPpYEBujv8rpr6dx1Sq6uYXFgszDLU66SJIpQo4AJ3aH5AXVOn1IRSr5pYmWanCdZ7LbrTovda9F5Lx98cr9e2Cv5E_0uAP1OdWx8</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Drosou, Marina</creator><creator>Jagadish, H V</creator><creator>Pitoura, Evaggelia</creator><creator>Stoyanovich, Julia</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Diversity in Big Data: A Review</title><author>Drosou, Marina ; Jagadish, H V ; Pitoura, Evaggelia ; Stoyanovich, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-caa3bf6c7c5d59824c584464220c63b3dd5b196da23fe1d7c27433bcf9bcd3fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Crowdsourcing</topic><topic>Data Interpretation, Statistical</topic><topic>Empirical Research</topic><topic>Models, Statistical</topic><topic>Personnel Selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drosou, Marina</creatorcontrib><creatorcontrib>Jagadish, H V</creatorcontrib><creatorcontrib>Pitoura, Evaggelia</creatorcontrib><creatorcontrib>Stoyanovich, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drosou, Marina</au><au>Jagadish, H V</au><au>Pitoura, Evaggelia</au><au>Stoyanovich, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity in Big Data: A Review</atitle><jtitle>Big data</jtitle><addtitle>Big Data</addtitle><date>2017-06</date><risdate>2017</risdate><volume>5</volume><issue>2</issue><spage>73</spage><epage>84</epage><pages>73-84</pages><issn>2167-6461</issn><eissn>2167-647X</eissn><abstract>Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diversity and fairness, and identify promising directions for future work that will position diversity as an important component of a data-responsible society. We argue that diversity should come to the forefront of our discourse, for reasons that are both ethical-to mitigate the risks of exclusion-and utilitarian, to enable more powerful, accurate, and engaging data analysis and use.</abstract><cop>United States</cop><pmid>28632443</pmid><doi>10.1089/big.2016.0054</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2167-6461
ispartof Big data, 2017-06, Vol.5 (2), p.73-84
issn 2167-6461
2167-647X
language eng
recordid cdi_proquest_miscellaneous_1912193560
source MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Crowdsourcing
Data Interpretation, Statistical
Empirical Research
Models, Statistical
Personnel Selection
title Diversity in Big Data: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20in%20Big%20Data:%20A%20Review&rft.jtitle=Big%20data&rft.au=Drosou,%20Marina&rft.date=2017-06&rft.volume=5&rft.issue=2&rft.spage=73&rft.epage=84&rft.pages=73-84&rft.issn=2167-6461&rft.eissn=2167-647X&rft_id=info:doi/10.1089/big.2016.0054&rft_dat=%3Cproquest_cross%3E1912193560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912193560&rft_id=info:pmid/28632443&rfr_iscdi=true