Diversity in Big Data: A Review
Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection task...
Gespeichert in:
Veröffentlicht in: | Big data 2017-06, Vol.5 (2), p.73-84 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 2 |
container_start_page | 73 |
container_title | Big data |
container_volume | 5 |
creator | Drosou, Marina Jagadish, H V Pitoura, Evaggelia Stoyanovich, Julia |
description | Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diversity and fairness, and identify promising directions for future work that will position diversity as an important component of a data-responsible society. We argue that diversity should come to the forefront of our discourse, for reasons that are both ethical-to mitigate the risks of exclusion-and utilitarian, to enable more powerful, accurate, and engaging data analysis and use. |
doi_str_mv | 10.1089/big.2016.0054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1912193560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912193560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-caa3bf6c7c5d59824c584464220c63b3dd5b196da23fe1d7c27433bcf9bcd3fa3</originalsourceid><addsrcrecordid>eNo9kEtPAjEYRRujEYIs3eos3Qy2_fqYukPwlZCYGE3cNX0NqWEYnA4Q_r1DQO7m3sXJXRyErgkeEVyoexvnI4qJGGHM2RnqUyJkLpj8Pj9tQXpomNIP7iKlYgW5RD1aCKCMQR_dTuMmNCm2uywus8c4z6amNQ_ZOPsImxi2V-iiNIsUhsceoK_np8_Jaz57f3mbjGe5A6Bt7owBWwonHfdcFZQ5XjAmGKXYCbDgPbdECW8olIF46ahkANaVyjoPpYEBujv8rpr6dx1Sq6uYXFgszDLU66SJIpQo4AJ3aH5AXVOn1IRSr5pYmWanCdZ7LbrTovda9F5Lx98cr9e2Cv5E_0uAP1OdWx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912193560</pqid></control><display><type>article</type><title>Diversity in Big Data: A Review</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Drosou, Marina ; Jagadish, H V ; Pitoura, Evaggelia ; Stoyanovich, Julia</creator><creatorcontrib>Drosou, Marina ; Jagadish, H V ; Pitoura, Evaggelia ; Stoyanovich, Julia</creatorcontrib><description>Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diversity and fairness, and identify promising directions for future work that will position diversity as an important component of a data-responsible society. We argue that diversity should come to the forefront of our discourse, for reasons that are both ethical-to mitigate the risks of exclusion-and utilitarian, to enable more powerful, accurate, and engaging data analysis and use.</description><identifier>ISSN: 2167-6461</identifier><identifier>EISSN: 2167-647X</identifier><identifier>DOI: 10.1089/big.2016.0054</identifier><identifier>PMID: 28632443</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Crowdsourcing ; Data Interpretation, Statistical ; Empirical Research ; Models, Statistical ; Personnel Selection</subject><ispartof>Big data, 2017-06, Vol.5 (2), p.73-84</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-caa3bf6c7c5d59824c584464220c63b3dd5b196da23fe1d7c27433bcf9bcd3fa3</citedby><cites>FETCH-LOGICAL-c332t-caa3bf6c7c5d59824c584464220c63b3dd5b196da23fe1d7c27433bcf9bcd3fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28632443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drosou, Marina</creatorcontrib><creatorcontrib>Jagadish, H V</creatorcontrib><creatorcontrib>Pitoura, Evaggelia</creatorcontrib><creatorcontrib>Stoyanovich, Julia</creatorcontrib><title>Diversity in Big Data: A Review</title><title>Big data</title><addtitle>Big Data</addtitle><description>Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diversity and fairness, and identify promising directions for future work that will position diversity as an important component of a data-responsible society. We argue that diversity should come to the forefront of our discourse, for reasons that are both ethical-to mitigate the risks of exclusion-and utilitarian, to enable more powerful, accurate, and engaging data analysis and use.</description><subject>Algorithms</subject><subject>Crowdsourcing</subject><subject>Data Interpretation, Statistical</subject><subject>Empirical Research</subject><subject>Models, Statistical</subject><subject>Personnel Selection</subject><issn>2167-6461</issn><issn>2167-647X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPAjEYRRujEYIs3eos3Qy2_fqYukPwlZCYGE3cNX0NqWEYnA4Q_r1DQO7m3sXJXRyErgkeEVyoexvnI4qJGGHM2RnqUyJkLpj8Pj9tQXpomNIP7iKlYgW5RD1aCKCMQR_dTuMmNCm2uywus8c4z6amNQ_ZOPsImxi2V-iiNIsUhsceoK_np8_Jaz57f3mbjGe5A6Bt7owBWwonHfdcFZQ5XjAmGKXYCbDgPbdECW8olIF46ahkANaVyjoPpYEBujv8rpr6dx1Sq6uYXFgszDLU66SJIpQo4AJ3aH5AXVOn1IRSr5pYmWanCdZ7LbrTovda9F5Lx98cr9e2Cv5E_0uAP1OdWx8</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Drosou, Marina</creator><creator>Jagadish, H V</creator><creator>Pitoura, Evaggelia</creator><creator>Stoyanovich, Julia</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Diversity in Big Data: A Review</title><author>Drosou, Marina ; Jagadish, H V ; Pitoura, Evaggelia ; Stoyanovich, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-caa3bf6c7c5d59824c584464220c63b3dd5b196da23fe1d7c27433bcf9bcd3fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Crowdsourcing</topic><topic>Data Interpretation, Statistical</topic><topic>Empirical Research</topic><topic>Models, Statistical</topic><topic>Personnel Selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drosou, Marina</creatorcontrib><creatorcontrib>Jagadish, H V</creatorcontrib><creatorcontrib>Pitoura, Evaggelia</creatorcontrib><creatorcontrib>Stoyanovich, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drosou, Marina</au><au>Jagadish, H V</au><au>Pitoura, Evaggelia</au><au>Stoyanovich, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity in Big Data: A Review</atitle><jtitle>Big data</jtitle><addtitle>Big Data</addtitle><date>2017-06</date><risdate>2017</risdate><volume>5</volume><issue>2</issue><spage>73</spage><epage>84</epage><pages>73-84</pages><issn>2167-6461</issn><eissn>2167-647X</eissn><abstract>Big data technology offers unprecedented opportunities to society as a whole and also to its individual members. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diversity and fairness, and identify promising directions for future work that will position diversity as an important component of a data-responsible society. We argue that diversity should come to the forefront of our discourse, for reasons that are both ethical-to mitigate the risks of exclusion-and utilitarian, to enable more powerful, accurate, and engaging data analysis and use.</abstract><cop>United States</cop><pmid>28632443</pmid><doi>10.1089/big.2016.0054</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-6461 |
ispartof | Big data, 2017-06, Vol.5 (2), p.73-84 |
issn | 2167-6461 2167-647X |
language | eng |
recordid | cdi_proquest_miscellaneous_1912193560 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Algorithms Crowdsourcing Data Interpretation, Statistical Empirical Research Models, Statistical Personnel Selection |
title | Diversity in Big Data: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20in%20Big%20Data:%20A%20Review&rft.jtitle=Big%20data&rft.au=Drosou,%20Marina&rft.date=2017-06&rft.volume=5&rft.issue=2&rft.spage=73&rft.epage=84&rft.pages=73-84&rft.issn=2167-6461&rft.eissn=2167-647X&rft_id=info:doi/10.1089/big.2016.0054&rft_dat=%3Cproquest_cross%3E1912193560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912193560&rft_id=info:pmid/28632443&rfr_iscdi=true |