3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs

The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2017-08, Vol.17 (15), p.2561-2571
Hauptverfasser: Singh, Manjot, Tong, Yuxin, Webster, Kelly, Cesewski, Ellen, Haring, Alexander P, Laheri, Sahil, Carswell, Bill, O'Brien, Timothy J, Aardema, Charles H, Senger, Ryan S, Robertson, John L, Johnson, Blake N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2571
container_issue 15
container_start_page 2561
container_title Lab on a chip
container_volume 17
creator Singh, Manjot
Tong, Yuxin
Webster, Kelly
Cesewski, Ellen
Haring, Alexander P
Laheri, Sahil
Carswell, Bill
O'Brien, Timothy J
Aardema, Charles H
Senger, Ryan S
Robertson, John L
Johnson, Blake N
description The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.
doi_str_mv 10.1039/c7lc00468k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1911715347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911715347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8a4f4aec74196e61444f693ceee531081ab81727a8e1fb6282c87fe9f456bdcf3</originalsourceid><addsrcrecordid>eNo9kE1PxCAQhonRuOvqxR9gOBqTKlNooUdTP-MmXvRqQymsuLQotDH-e9FdPc1k8sxk3gehYyDnQGh1obhThLBSrHfQHBinGQFR7f73FZ-hgxjfCIEiUftolouS5nlZzNELvcLvwQ6j7rDyg_Ghlw73VgVv3GQ7qyJOQ2yjd3K0fsBy6NKGN9bZYYW9wa31vQxrHRIZfI8_X73T2IeVHOIh2jPSRX20rQv0fHP9VN9ly8fb-_pymSlawZgJyQyTWnEGValLYIyZsqJKa11QIAJkK4DnXAoNpi1zkSvBja4MK8q2U4Yu0OnmbvrsY9JxbHoblXZODtpPsYEKgENBk5AFOtugKWKMQZsm5U8BvhogzY_PpubL-tfnQ4JPtnenttfdP_onkH4Dt2JxjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911715347</pqid></control><display><type>article</type><title>3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Singh, Manjot ; Tong, Yuxin ; Webster, Kelly ; Cesewski, Ellen ; Haring, Alexander P ; Laheri, Sahil ; Carswell, Bill ; O'Brien, Timothy J ; Aardema, Charles H ; Senger, Ryan S ; Robertson, John L ; Johnson, Blake N</creator><creatorcontrib>Singh, Manjot ; Tong, Yuxin ; Webster, Kelly ; Cesewski, Ellen ; Haring, Alexander P ; Laheri, Sahil ; Carswell, Bill ; O'Brien, Timothy J ; Aardema, Charles H ; Senger, Ryan S ; Robertson, John L ; Johnson, Blake N</creatorcontrib><description>The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c7lc00468k</identifier><identifier>PMID: 28632265</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Biomarkers - metabolism ; Biomimetic Materials ; Equipment Design ; Female ; Hepatitis A Virus Cellular Receptor 1 ; HSP70 Heat-Shock Proteins ; Kidney - metabolism ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Models, Biological ; Printing, Three-Dimensional ; Swine ; Tissue Culture Techniques - instrumentation</subject><ispartof>Lab on a chip, 2017-08, Vol.17 (15), p.2561-2571</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8a4f4aec74196e61444f693ceee531081ab81727a8e1fb6282c87fe9f456bdcf3</citedby><cites>FETCH-LOGICAL-c391t-8a4f4aec74196e61444f693ceee531081ab81727a8e1fb6282c87fe9f456bdcf3</cites><orcidid>0000-0003-4668-2011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28632265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Manjot</creatorcontrib><creatorcontrib>Tong, Yuxin</creatorcontrib><creatorcontrib>Webster, Kelly</creatorcontrib><creatorcontrib>Cesewski, Ellen</creatorcontrib><creatorcontrib>Haring, Alexander P</creatorcontrib><creatorcontrib>Laheri, Sahil</creatorcontrib><creatorcontrib>Carswell, Bill</creatorcontrib><creatorcontrib>O'Brien, Timothy J</creatorcontrib><creatorcontrib>Aardema, Charles H</creatorcontrib><creatorcontrib>Senger, Ryan S</creatorcontrib><creatorcontrib>Robertson, John L</creatorcontrib><creatorcontrib>Johnson, Blake N</creatorcontrib><title>3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.</description><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Biomimetic Materials</subject><subject>Equipment Design</subject><subject>Female</subject><subject>Hepatitis A Virus Cellular Receptor 1</subject><subject>HSP70 Heat-Shock Proteins</subject><subject>Kidney - metabolism</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Models, Biological</subject><subject>Printing, Three-Dimensional</subject><subject>Swine</subject><subject>Tissue Culture Techniques - instrumentation</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PxCAQhonRuOvqxR9gOBqTKlNooUdTP-MmXvRqQymsuLQotDH-e9FdPc1k8sxk3gehYyDnQGh1obhThLBSrHfQHBinGQFR7f73FZ-hgxjfCIEiUftolouS5nlZzNELvcLvwQ6j7rDyg_Ghlw73VgVv3GQ7qyJOQ2yjd3K0fsBy6NKGN9bZYYW9wa31vQxrHRIZfI8_X73T2IeVHOIh2jPSRX20rQv0fHP9VN9ly8fb-_pymSlawZgJyQyTWnEGValLYIyZsqJKa11QIAJkK4DnXAoNpi1zkSvBja4MK8q2U4Yu0OnmbvrsY9JxbHoblXZODtpPsYEKgENBk5AFOtugKWKMQZsm5U8BvhogzY_PpubL-tfnQ4JPtnenttfdP_onkH4Dt2JxjA</recordid><startdate>20170807</startdate><enddate>20170807</enddate><creator>Singh, Manjot</creator><creator>Tong, Yuxin</creator><creator>Webster, Kelly</creator><creator>Cesewski, Ellen</creator><creator>Haring, Alexander P</creator><creator>Laheri, Sahil</creator><creator>Carswell, Bill</creator><creator>O'Brien, Timothy J</creator><creator>Aardema, Charles H</creator><creator>Senger, Ryan S</creator><creator>Robertson, John L</creator><creator>Johnson, Blake N</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4668-2011</orcidid></search><sort><creationdate>20170807</creationdate><title>3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs</title><author>Singh, Manjot ; Tong, Yuxin ; Webster, Kelly ; Cesewski, Ellen ; Haring, Alexander P ; Laheri, Sahil ; Carswell, Bill ; O'Brien, Timothy J ; Aardema, Charles H ; Senger, Ryan S ; Robertson, John L ; Johnson, Blake N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8a4f4aec74196e61444f693ceee531081ab81727a8e1fb6282c87fe9f456bdcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Biomimetic Materials</topic><topic>Equipment Design</topic><topic>Female</topic><topic>Hepatitis A Virus Cellular Receptor 1</topic><topic>HSP70 Heat-Shock Proteins</topic><topic>Kidney - metabolism</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Models, Biological</topic><topic>Printing, Three-Dimensional</topic><topic>Swine</topic><topic>Tissue Culture Techniques - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Manjot</creatorcontrib><creatorcontrib>Tong, Yuxin</creatorcontrib><creatorcontrib>Webster, Kelly</creatorcontrib><creatorcontrib>Cesewski, Ellen</creatorcontrib><creatorcontrib>Haring, Alexander P</creatorcontrib><creatorcontrib>Laheri, Sahil</creatorcontrib><creatorcontrib>Carswell, Bill</creatorcontrib><creatorcontrib>O'Brien, Timothy J</creatorcontrib><creatorcontrib>Aardema, Charles H</creatorcontrib><creatorcontrib>Senger, Ryan S</creatorcontrib><creatorcontrib>Robertson, John L</creatorcontrib><creatorcontrib>Johnson, Blake N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Manjot</au><au>Tong, Yuxin</au><au>Webster, Kelly</au><au>Cesewski, Ellen</au><au>Haring, Alexander P</au><au>Laheri, Sahil</au><au>Carswell, Bill</au><au>O'Brien, Timothy J</au><au>Aardema, Charles H</au><au>Senger, Ryan S</au><au>Robertson, John L</au><au>Johnson, Blake N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2017-08-07</date><risdate>2017</risdate><volume>17</volume><issue>15</issue><spage>2561</spage><epage>2571</epage><pages>2561-2571</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.</abstract><cop>England</cop><pmid>28632265</pmid><doi>10.1039/c7lc00468k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4668-2011</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2017-08, Vol.17 (15), p.2561-2571
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_1911715347
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Biomarkers - metabolism
Biomimetic Materials
Equipment Design
Female
Hepatitis A Virus Cellular Receptor 1
HSP70 Heat-Shock Proteins
Kidney - metabolism
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Models, Biological
Printing, Three-Dimensional
Swine
Tissue Culture Techniques - instrumentation
title 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20conformal%20microfluidics%20for%20isolation%20and%20profiling%20of%20biomarkers%20from%20whole%20organs&rft.jtitle=Lab%20on%20a%20chip&rft.au=Singh,%20Manjot&rft.date=2017-08-07&rft.volume=17&rft.issue=15&rft.spage=2561&rft.epage=2571&rft.pages=2561-2571&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c7lc00468k&rft_dat=%3Cproquest_cross%3E1911715347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911715347&rft_id=info:pmid/28632265&rfr_iscdi=true