3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs
The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices th...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2017-08, Vol.17 (15), p.2561-2571 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2571 |
---|---|
container_issue | 15 |
container_start_page | 2561 |
container_title | Lab on a chip |
container_volume | 17 |
creator | Singh, Manjot Tong, Yuxin Webster, Kelly Cesewski, Ellen Haring, Alexander P Laheri, Sahil Carswell, Bill O'Brien, Timothy J Aardema, Charles H Senger, Ryan S Robertson, John L Johnson, Blake N |
description | The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL
, respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs. |
doi_str_mv | 10.1039/c7lc00468k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1911715347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911715347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8a4f4aec74196e61444f693ceee531081ab81727a8e1fb6282c87fe9f456bdcf3</originalsourceid><addsrcrecordid>eNo9kE1PxCAQhonRuOvqxR9gOBqTKlNooUdTP-MmXvRqQymsuLQotDH-e9FdPc1k8sxk3gehYyDnQGh1obhThLBSrHfQHBinGQFR7f73FZ-hgxjfCIEiUftolouS5nlZzNELvcLvwQ6j7rDyg_Ghlw73VgVv3GQ7qyJOQ2yjd3K0fsBy6NKGN9bZYYW9wa31vQxrHRIZfI8_X73T2IeVHOIh2jPSRX20rQv0fHP9VN9ly8fb-_pymSlawZgJyQyTWnEGValLYIyZsqJKa11QIAJkK4DnXAoNpi1zkSvBja4MK8q2U4Yu0OnmbvrsY9JxbHoblXZODtpPsYEKgENBk5AFOtugKWKMQZsm5U8BvhogzY_PpubL-tfnQ4JPtnenttfdP_onkH4Dt2JxjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911715347</pqid></control><display><type>article</type><title>3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Singh, Manjot ; Tong, Yuxin ; Webster, Kelly ; Cesewski, Ellen ; Haring, Alexander P ; Laheri, Sahil ; Carswell, Bill ; O'Brien, Timothy J ; Aardema, Charles H ; Senger, Ryan S ; Robertson, John L ; Johnson, Blake N</creator><creatorcontrib>Singh, Manjot ; Tong, Yuxin ; Webster, Kelly ; Cesewski, Ellen ; Haring, Alexander P ; Laheri, Sahil ; Carswell, Bill ; O'Brien, Timothy J ; Aardema, Charles H ; Senger, Ryan S ; Robertson, John L ; Johnson, Blake N</creatorcontrib><description>The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL
, respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c7lc00468k</identifier><identifier>PMID: 28632265</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Biomarkers - metabolism ; Biomimetic Materials ; Equipment Design ; Female ; Hepatitis A Virus Cellular Receptor 1 ; HSP70 Heat-Shock Proteins ; Kidney - metabolism ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Models, Biological ; Printing, Three-Dimensional ; Swine ; Tissue Culture Techniques - instrumentation</subject><ispartof>Lab on a chip, 2017-08, Vol.17 (15), p.2561-2571</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8a4f4aec74196e61444f693ceee531081ab81727a8e1fb6282c87fe9f456bdcf3</citedby><cites>FETCH-LOGICAL-c391t-8a4f4aec74196e61444f693ceee531081ab81727a8e1fb6282c87fe9f456bdcf3</cites><orcidid>0000-0003-4668-2011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28632265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Manjot</creatorcontrib><creatorcontrib>Tong, Yuxin</creatorcontrib><creatorcontrib>Webster, Kelly</creatorcontrib><creatorcontrib>Cesewski, Ellen</creatorcontrib><creatorcontrib>Haring, Alexander P</creatorcontrib><creatorcontrib>Laheri, Sahil</creatorcontrib><creatorcontrib>Carswell, Bill</creatorcontrib><creatorcontrib>O'Brien, Timothy J</creatorcontrib><creatorcontrib>Aardema, Charles H</creatorcontrib><creatorcontrib>Senger, Ryan S</creatorcontrib><creatorcontrib>Robertson, John L</creatorcontrib><creatorcontrib>Johnson, Blake N</creatorcontrib><title>3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL
, respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.</description><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Biomimetic Materials</subject><subject>Equipment Design</subject><subject>Female</subject><subject>Hepatitis A Virus Cellular Receptor 1</subject><subject>HSP70 Heat-Shock Proteins</subject><subject>Kidney - metabolism</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Models, Biological</subject><subject>Printing, Three-Dimensional</subject><subject>Swine</subject><subject>Tissue Culture Techniques - instrumentation</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PxCAQhonRuOvqxR9gOBqTKlNooUdTP-MmXvRqQymsuLQotDH-e9FdPc1k8sxk3gehYyDnQGh1obhThLBSrHfQHBinGQFR7f73FZ-hgxjfCIEiUftolouS5nlZzNELvcLvwQ6j7rDyg_Ghlw73VgVv3GQ7qyJOQ2yjd3K0fsBy6NKGN9bZYYW9wa31vQxrHRIZfI8_X73T2IeVHOIh2jPSRX20rQv0fHP9VN9ly8fb-_pymSlawZgJyQyTWnEGValLYIyZsqJKa11QIAJkK4DnXAoNpi1zkSvBja4MK8q2U4Yu0OnmbvrsY9JxbHoblXZODtpPsYEKgENBk5AFOtugKWKMQZsm5U8BvhogzY_PpubL-tfnQ4JPtnenttfdP_onkH4Dt2JxjA</recordid><startdate>20170807</startdate><enddate>20170807</enddate><creator>Singh, Manjot</creator><creator>Tong, Yuxin</creator><creator>Webster, Kelly</creator><creator>Cesewski, Ellen</creator><creator>Haring, Alexander P</creator><creator>Laheri, Sahil</creator><creator>Carswell, Bill</creator><creator>O'Brien, Timothy J</creator><creator>Aardema, Charles H</creator><creator>Senger, Ryan S</creator><creator>Robertson, John L</creator><creator>Johnson, Blake N</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4668-2011</orcidid></search><sort><creationdate>20170807</creationdate><title>3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs</title><author>Singh, Manjot ; Tong, Yuxin ; Webster, Kelly ; Cesewski, Ellen ; Haring, Alexander P ; Laheri, Sahil ; Carswell, Bill ; O'Brien, Timothy J ; Aardema, Charles H ; Senger, Ryan S ; Robertson, John L ; Johnson, Blake N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8a4f4aec74196e61444f693ceee531081ab81727a8e1fb6282c87fe9f456bdcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Biomimetic Materials</topic><topic>Equipment Design</topic><topic>Female</topic><topic>Hepatitis A Virus Cellular Receptor 1</topic><topic>HSP70 Heat-Shock Proteins</topic><topic>Kidney - metabolism</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Models, Biological</topic><topic>Printing, Three-Dimensional</topic><topic>Swine</topic><topic>Tissue Culture Techniques - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Manjot</creatorcontrib><creatorcontrib>Tong, Yuxin</creatorcontrib><creatorcontrib>Webster, Kelly</creatorcontrib><creatorcontrib>Cesewski, Ellen</creatorcontrib><creatorcontrib>Haring, Alexander P</creatorcontrib><creatorcontrib>Laheri, Sahil</creatorcontrib><creatorcontrib>Carswell, Bill</creatorcontrib><creatorcontrib>O'Brien, Timothy J</creatorcontrib><creatorcontrib>Aardema, Charles H</creatorcontrib><creatorcontrib>Senger, Ryan S</creatorcontrib><creatorcontrib>Robertson, John L</creatorcontrib><creatorcontrib>Johnson, Blake N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Manjot</au><au>Tong, Yuxin</au><au>Webster, Kelly</au><au>Cesewski, Ellen</au><au>Haring, Alexander P</au><au>Laheri, Sahil</au><au>Carswell, Bill</au><au>O'Brien, Timothy J</au><au>Aardema, Charles H</au><au>Senger, Ryan S</au><au>Robertson, John L</au><au>Johnson, Blake N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2017-08-07</date><risdate>2017</risdate><volume>17</volume><issue>15</issue><spage>2561</spage><epage>2571</epage><pages>2561-2571</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL
, respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.</abstract><cop>England</cop><pmid>28632265</pmid><doi>10.1039/c7lc00468k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4668-2011</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2017-08, Vol.17 (15), p.2561-2571 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1911715347 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Animals Biomarkers - metabolism Biomimetic Materials Equipment Design Female Hepatitis A Virus Cellular Receptor 1 HSP70 Heat-Shock Proteins Kidney - metabolism Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Models, Biological Printing, Three-Dimensional Swine Tissue Culture Techniques - instrumentation |
title | 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20conformal%20microfluidics%20for%20isolation%20and%20profiling%20of%20biomarkers%20from%20whole%20organs&rft.jtitle=Lab%20on%20a%20chip&rft.au=Singh,%20Manjot&rft.date=2017-08-07&rft.volume=17&rft.issue=15&rft.spage=2561&rft.epage=2571&rft.pages=2561-2571&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c7lc00468k&rft_dat=%3Cproquest_cross%3E1911715347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911715347&rft_id=info:pmid/28632265&rfr_iscdi=true |