Resorbable nanocomposites with bone-like strength and enhanced cellular activity

Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate align...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2017-06, Vol.5 (22), p.4198-426
Hauptverfasser: Lu, S, McGough, M. A. P, Rogers, B. R, Wenke, J. C, Shimko, D, Guelcher, S. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 22
container_start_page 4198
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 5
creator Lu, S
McGough, M. A. P
Rogers, B. R
Wenke, J. C
Shimko, D
Guelcher, S. A
description Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol via a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells in vitro , and undergo osteoclast-mediated degradation in vitro . This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites. Nanocomposites fabricated by mixing a nanocrystalline hydroxyapatite prepolymer and a polyol exhibit bone-like strength, enhance mineralization, and support osteoclast-mediated resorption.
doi_str_mv 10.1039/c7tb00657h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1911619228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087999017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-d578127191156ba41677508e933b716a2b94e3e1d3cbc6ed69ab5a87557b8f6a3</originalsourceid><addsrcrecordid>eNqNks1rVDEUxYMottRu3CvPnRSe5uPlayPoUK1QaCkV3IUk704n-iaZJplK_3szTh3rxposEnJ-HM69uQg9J_gNwUy_9bI6jAWXi0don2KOe8mJery746976LCUb7gtRYRiw1O0xzBpm5F9dH4BJWVn3QRdtDH5tFylEiqU7keoi86lCP0UvkNXaoZ41Z5sHDuICxs9jJ2HaVpPNnfW13AT6u0z9GRupwKHd-cB-vLx-HJ20p-effo8e3_ae0557UcuFaGSaEK4cHYgQrasCjRjThJhqdMDMCAj884LGIW2jlslOZdOzYVlB-jd1ne1dksYPcSa7WRWOSxtvjXJBvO3EsPCXKUbI7ASTMhm8PrOIKfrNZRqlqFsyrER0roY2tK1bg0DfRjFSmqtMXnYtRXMGeWbDP-BEkE0paqhR1vU51RKhvmuToLNZgzMTF5--DUGJw1-eb8zO_T3pzfgxRbIxe_UP3PU9Ff_0s1qnLOfDm7COQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911619228</pqid></control><display><type>article</type><title>Resorbable nanocomposites with bone-like strength and enhanced cellular activity</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lu, S ; McGough, M. A. P ; Rogers, B. R ; Wenke, J. C ; Shimko, D ; Guelcher, S. A</creator><creatorcontrib>Lu, S ; McGough, M. A. P ; Rogers, B. R ; Wenke, J. C ; Shimko, D ; Guelcher, S. A</creatorcontrib><description>Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol via a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells in vitro , and undergo osteoclast-mediated degradation in vitro . This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites. Nanocomposites fabricated by mixing a nanocrystalline hydroxyapatite prepolymer and a polyol exhibit bone-like strength, enhance mineralization, and support osteoclast-mediated resorption.</description><identifier>ISSN: 2050-750X</identifier><identifier>ISSN: 2050-7518</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c7tb00657h</identifier><identifier>PMID: 30101031</identifier><language>eng</language><publisher>England</publisher><subject>Biocompatibility ; Biomedical materials ; Bone cements ; bone formation ; Bones ; cement ; Differentiation ; Hydroxyapatite ; lysine ; mechanical properties ; mineralization ; Nanocomposites ; nanocrystals ; osteoclasts ; patients ; Surgical implants ; urethane</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2017-06, Vol.5 (22), p.4198-426</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-d578127191156ba41677508e933b716a2b94e3e1d3cbc6ed69ab5a87557b8f6a3</citedby><cites>FETCH-LOGICAL-c525t-d578127191156ba41677508e933b716a2b94e3e1d3cbc6ed69ab5a87557b8f6a3</cites><orcidid>0000-0002-9871-8058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30101031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, S</creatorcontrib><creatorcontrib>McGough, M. A. P</creatorcontrib><creatorcontrib>Rogers, B. R</creatorcontrib><creatorcontrib>Wenke, J. C</creatorcontrib><creatorcontrib>Shimko, D</creatorcontrib><creatorcontrib>Guelcher, S. A</creatorcontrib><title>Resorbable nanocomposites with bone-like strength and enhanced cellular activity</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol via a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells in vitro , and undergo osteoclast-mediated degradation in vitro . This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites. Nanocomposites fabricated by mixing a nanocrystalline hydroxyapatite prepolymer and a polyol exhibit bone-like strength, enhance mineralization, and support osteoclast-mediated resorption.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone cements</subject><subject>bone formation</subject><subject>Bones</subject><subject>cement</subject><subject>Differentiation</subject><subject>Hydroxyapatite</subject><subject>lysine</subject><subject>mechanical properties</subject><subject>mineralization</subject><subject>Nanocomposites</subject><subject>nanocrystals</subject><subject>osteoclasts</subject><subject>patients</subject><subject>Surgical implants</subject><subject>urethane</subject><issn>2050-750X</issn><issn>2050-7518</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNks1rVDEUxYMottRu3CvPnRSe5uPlayPoUK1QaCkV3IUk704n-iaZJplK_3szTh3rxposEnJ-HM69uQg9J_gNwUy_9bI6jAWXi0don2KOe8mJery746976LCUb7gtRYRiw1O0xzBpm5F9dH4BJWVn3QRdtDH5tFylEiqU7keoi86lCP0UvkNXaoZ41Z5sHDuICxs9jJ2HaVpPNnfW13AT6u0z9GRupwKHd-cB-vLx-HJ20p-effo8e3_ae0557UcuFaGSaEK4cHYgQrasCjRjThJhqdMDMCAj884LGIW2jlslOZdOzYVlB-jd1ne1dksYPcSa7WRWOSxtvjXJBvO3EsPCXKUbI7ASTMhm8PrOIKfrNZRqlqFsyrER0roY2tK1bg0DfRjFSmqtMXnYtRXMGeWbDP-BEkE0paqhR1vU51RKhvmuToLNZgzMTF5--DUGJw1-eb8zO_T3pzfgxRbIxe_UP3PU9Ff_0s1qnLOfDm7COQ</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Lu, S</creator><creator>McGough, M. A. P</creator><creator>Rogers, B. R</creator><creator>Wenke, J. C</creator><creator>Shimko, D</creator><creator>Guelcher, S. A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9871-8058</orcidid></search><sort><creationdate>20170614</creationdate><title>Resorbable nanocomposites with bone-like strength and enhanced cellular activity</title><author>Lu, S ; McGough, M. A. P ; Rogers, B. R ; Wenke, J. C ; Shimko, D ; Guelcher, S. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-d578127191156ba41677508e933b716a2b94e3e1d3cbc6ed69ab5a87557b8f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone cements</topic><topic>bone formation</topic><topic>Bones</topic><topic>cement</topic><topic>Differentiation</topic><topic>Hydroxyapatite</topic><topic>lysine</topic><topic>mechanical properties</topic><topic>mineralization</topic><topic>Nanocomposites</topic><topic>nanocrystals</topic><topic>osteoclasts</topic><topic>patients</topic><topic>Surgical implants</topic><topic>urethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, S</creatorcontrib><creatorcontrib>McGough, M. A. P</creatorcontrib><creatorcontrib>Rogers, B. R</creatorcontrib><creatorcontrib>Wenke, J. C</creatorcontrib><creatorcontrib>Shimko, D</creatorcontrib><creatorcontrib>Guelcher, S. A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, S</au><au>McGough, M. A. P</au><au>Rogers, B. R</au><au>Wenke, J. C</au><au>Shimko, D</au><au>Guelcher, S. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resorbable nanocomposites with bone-like strength and enhanced cellular activity</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>5</volume><issue>22</issue><spage>4198</spage><epage>426</epage><pages>4198-426</pages><issn>2050-750X</issn><issn>2050-7518</issn><eissn>2050-7518</eissn><abstract>Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol via a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells in vitro , and undergo osteoclast-mediated degradation in vitro . This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites. Nanocomposites fabricated by mixing a nanocrystalline hydroxyapatite prepolymer and a polyol exhibit bone-like strength, enhance mineralization, and support osteoclast-mediated resorption.</abstract><cop>England</cop><pmid>30101031</pmid><doi>10.1039/c7tb00657h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9871-8058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2017-06, Vol.5 (22), p.4198-426
issn 2050-750X
2050-7518
2050-7518
language eng
recordid cdi_proquest_miscellaneous_1911619228
source Royal Society Of Chemistry Journals 2008-
subjects Biocompatibility
Biomedical materials
Bone cements
bone formation
Bones
cement
Differentiation
Hydroxyapatite
lysine
mechanical properties
mineralization
Nanocomposites
nanocrystals
osteoclasts
patients
Surgical implants
urethane
title Resorbable nanocomposites with bone-like strength and enhanced cellular activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resorbable%20nanocomposites%20with%20bone-like%20strength%20and%20enhanced%20cellular%20activity&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Lu,%20S&rft.date=2017-06-14&rft.volume=5&rft.issue=22&rft.spage=4198&rft.epage=426&rft.pages=4198-426&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c7tb00657h&rft_dat=%3Cproquest_cross%3E2087999017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911619228&rft_id=info:pmid/30101031&rfr_iscdi=true