Resorbable nanocomposites with bone-like strength and enhanced cellular activity
Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate align...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2017-06, Vol.5 (22), p.4198-426 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 22 |
container_start_page | 4198 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 5 |
creator | Lu, S McGough, M. A. P Rogers, B. R Wenke, J. C Shimko, D Guelcher, S. A |
description | Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol
via
a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells
in vitro
, and undergo osteoclast-mediated degradation
in vitro
. This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites.
Nanocomposites fabricated by mixing a nanocrystalline hydroxyapatite prepolymer and a polyol exhibit bone-like strength, enhance mineralization, and support osteoclast-mediated resorption. |
doi_str_mv | 10.1039/c7tb00657h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1911619228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087999017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-d578127191156ba41677508e933b716a2b94e3e1d3cbc6ed69ab5a87557b8f6a3</originalsourceid><addsrcrecordid>eNqNks1rVDEUxYMottRu3CvPnRSe5uPlayPoUK1QaCkV3IUk704n-iaZJplK_3szTh3rxposEnJ-HM69uQg9J_gNwUy_9bI6jAWXi0don2KOe8mJery746976LCUb7gtRYRiw1O0xzBpm5F9dH4BJWVn3QRdtDH5tFylEiqU7keoi86lCP0UvkNXaoZ41Z5sHDuICxs9jJ2HaVpPNnfW13AT6u0z9GRupwKHd-cB-vLx-HJ20p-effo8e3_ae0557UcuFaGSaEK4cHYgQrasCjRjThJhqdMDMCAj884LGIW2jlslOZdOzYVlB-jd1ne1dksYPcSa7WRWOSxtvjXJBvO3EsPCXKUbI7ASTMhm8PrOIKfrNZRqlqFsyrER0roY2tK1bg0DfRjFSmqtMXnYtRXMGeWbDP-BEkE0paqhR1vU51RKhvmuToLNZgzMTF5--DUGJw1-eb8zO_T3pzfgxRbIxe_UP3PU9Ff_0s1qnLOfDm7COQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911619228</pqid></control><display><type>article</type><title>Resorbable nanocomposites with bone-like strength and enhanced cellular activity</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lu, S ; McGough, M. A. P ; Rogers, B. R ; Wenke, J. C ; Shimko, D ; Guelcher, S. A</creator><creatorcontrib>Lu, S ; McGough, M. A. P ; Rogers, B. R ; Wenke, J. C ; Shimko, D ; Guelcher, S. A</creatorcontrib><description>Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol
via
a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells
in vitro
, and undergo osteoclast-mediated degradation
in vitro
. This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites.
Nanocomposites fabricated by mixing a nanocrystalline hydroxyapatite prepolymer and a polyol exhibit bone-like strength, enhance mineralization, and support osteoclast-mediated resorption.</description><identifier>ISSN: 2050-750X</identifier><identifier>ISSN: 2050-7518</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c7tb00657h</identifier><identifier>PMID: 30101031</identifier><language>eng</language><publisher>England</publisher><subject>Biocompatibility ; Biomedical materials ; Bone cements ; bone formation ; Bones ; cement ; Differentiation ; Hydroxyapatite ; lysine ; mechanical properties ; mineralization ; Nanocomposites ; nanocrystals ; osteoclasts ; patients ; Surgical implants ; urethane</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2017-06, Vol.5 (22), p.4198-426</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-d578127191156ba41677508e933b716a2b94e3e1d3cbc6ed69ab5a87557b8f6a3</citedby><cites>FETCH-LOGICAL-c525t-d578127191156ba41677508e933b716a2b94e3e1d3cbc6ed69ab5a87557b8f6a3</cites><orcidid>0000-0002-9871-8058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30101031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, S</creatorcontrib><creatorcontrib>McGough, M. A. P</creatorcontrib><creatorcontrib>Rogers, B. R</creatorcontrib><creatorcontrib>Wenke, J. C</creatorcontrib><creatorcontrib>Shimko, D</creatorcontrib><creatorcontrib>Guelcher, S. A</creatorcontrib><title>Resorbable nanocomposites with bone-like strength and enhanced cellular activity</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol
via
a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells
in vitro
, and undergo osteoclast-mediated degradation
in vitro
. This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites.
Nanocomposites fabricated by mixing a nanocrystalline hydroxyapatite prepolymer and a polyol exhibit bone-like strength, enhance mineralization, and support osteoclast-mediated resorption.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone cements</subject><subject>bone formation</subject><subject>Bones</subject><subject>cement</subject><subject>Differentiation</subject><subject>Hydroxyapatite</subject><subject>lysine</subject><subject>mechanical properties</subject><subject>mineralization</subject><subject>Nanocomposites</subject><subject>nanocrystals</subject><subject>osteoclasts</subject><subject>patients</subject><subject>Surgical implants</subject><subject>urethane</subject><issn>2050-750X</issn><issn>2050-7518</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNks1rVDEUxYMottRu3CvPnRSe5uPlayPoUK1QaCkV3IUk704n-iaZJplK_3szTh3rxposEnJ-HM69uQg9J_gNwUy_9bI6jAWXi0don2KOe8mJery746976LCUb7gtRYRiw1O0xzBpm5F9dH4BJWVn3QRdtDH5tFylEiqU7keoi86lCP0UvkNXaoZ41Z5sHDuICxs9jJ2HaVpPNnfW13AT6u0z9GRupwKHd-cB-vLx-HJ20p-effo8e3_ae0557UcuFaGSaEK4cHYgQrasCjRjThJhqdMDMCAj884LGIW2jlslOZdOzYVlB-jd1ne1dksYPcSa7WRWOSxtvjXJBvO3EsPCXKUbI7ASTMhm8PrOIKfrNZRqlqFsyrER0roY2tK1bg0DfRjFSmqtMXnYtRXMGeWbDP-BEkE0paqhR1vU51RKhvmuToLNZgzMTF5--DUGJw1-eb8zO_T3pzfgxRbIxe_UP3PU9Ff_0s1qnLOfDm7COQ</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Lu, S</creator><creator>McGough, M. A. P</creator><creator>Rogers, B. R</creator><creator>Wenke, J. C</creator><creator>Shimko, D</creator><creator>Guelcher, S. A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9871-8058</orcidid></search><sort><creationdate>20170614</creationdate><title>Resorbable nanocomposites with bone-like strength and enhanced cellular activity</title><author>Lu, S ; McGough, M. A. P ; Rogers, B. R ; Wenke, J. C ; Shimko, D ; Guelcher, S. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-d578127191156ba41677508e933b716a2b94e3e1d3cbc6ed69ab5a87557b8f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone cements</topic><topic>bone formation</topic><topic>Bones</topic><topic>cement</topic><topic>Differentiation</topic><topic>Hydroxyapatite</topic><topic>lysine</topic><topic>mechanical properties</topic><topic>mineralization</topic><topic>Nanocomposites</topic><topic>nanocrystals</topic><topic>osteoclasts</topic><topic>patients</topic><topic>Surgical implants</topic><topic>urethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, S</creatorcontrib><creatorcontrib>McGough, M. A. P</creatorcontrib><creatorcontrib>Rogers, B. R</creatorcontrib><creatorcontrib>Wenke, J. C</creatorcontrib><creatorcontrib>Shimko, D</creatorcontrib><creatorcontrib>Guelcher, S. A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, S</au><au>McGough, M. A. P</au><au>Rogers, B. R</au><au>Wenke, J. C</au><au>Shimko, D</au><au>Guelcher, S. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resorbable nanocomposites with bone-like strength and enhanced cellular activity</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>5</volume><issue>22</issue><spage>4198</spage><epage>426</epage><pages>4198-426</pages><issn>2050-750X</issn><issn>2050-7518</issn><eissn>2050-7518</eissn><abstract>Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol
via
a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells
in vitro
, and undergo osteoclast-mediated degradation
in vitro
. This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites.
Nanocomposites fabricated by mixing a nanocrystalline hydroxyapatite prepolymer and a polyol exhibit bone-like strength, enhance mineralization, and support osteoclast-mediated resorption.</abstract><cop>England</cop><pmid>30101031</pmid><doi>10.1039/c7tb00657h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9871-8058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2017-06, Vol.5 (22), p.4198-426 |
issn | 2050-750X 2050-7518 2050-7518 |
language | eng |
recordid | cdi_proquest_miscellaneous_1911619228 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Biocompatibility Biomedical materials Bone cements bone formation Bones cement Differentiation Hydroxyapatite lysine mechanical properties mineralization Nanocomposites nanocrystals osteoclasts patients Surgical implants urethane |
title | Resorbable nanocomposites with bone-like strength and enhanced cellular activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resorbable%20nanocomposites%20with%20bone-like%20strength%20and%20enhanced%20cellular%20activity&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Lu,%20S&rft.date=2017-06-14&rft.volume=5&rft.issue=22&rft.spage=4198&rft.epage=426&rft.pages=4198-426&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c7tb00657h&rft_dat=%3Cproquest_cross%3E2087999017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911619228&rft_id=info:pmid/30101031&rfr_iscdi=true |