Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction
•Conventional LASSO-Cox model could be used to predict cancer patients’ survival by concatenating multi-omics data.•SKI-Cox borrows the information generated by additional types of omics data to guide variable selection.•wLASSO-Cox puts a penalty factor to take the information derived from other omi...
Gespeichert in:
Veröffentlicht in: | Methods (San Diego, Calif.) Calif.), 2017-07, Vol.124, p.100-107 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107 |
---|---|
container_issue | |
container_start_page | 100 |
container_title | Methods (San Diego, Calif.) |
container_volume | 124 |
creator | Liu, Cong Wang, Xujun Genchev, Georgi Z. Lu, Hui |
description | •Conventional LASSO-Cox model could be used to predict cancer patients’ survival by concatenating multi-omics data.•SKI-Cox borrows the information generated by additional types of omics data to guide variable selection.•wLASSO-Cox puts a penalty factor to take the information derived from other omics data into account.•Both methods only use mRNA-expression data for prediction.
New developments in high-throughput genomic technologies have enabled the measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible manner. Developing computational methods and tools for analysis and translation of such genomic data into clinically-relevant information is an ongoing and active area of investigation. For example, several studies have utilized an unsupervised learning framework to cluster patients by integrating omics data. Despite such recent advances, predicting cancer prognosis using integrated omics biomarkers remains a challenge. There is also a shortage of computational tools for predicting cancer prognosis by using supervised learning methods. The current standard approach is to fit a Cox regression model by concatenating the different types of omics data in a linear manner, while penalty could be added for feature selection. A more powerful approach, however, would be to incorporate data by considering relationships among omics datatypes.
Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to incorporate the association among different types of omics data. Both methods fit the Cox proportional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox borrows the information generated by these additional types of omics data to guide variable selection, while wLASSO-Cox incorporates this information as a penalty factor during model fitting.
We show that SKI-Cox and wLASSO-Cox models select more true variables than a LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA expression, methylation, and copy number variation data are integrated to predict the overall survival time of cancer patients. Our methods achieve better performance in predicting patients’ survival in glioblastoma and lung adenocarcinoma. |
doi_str_mv | 10.1016/j.ymeth.2017.06.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1911207650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104620231730066X</els_id><sourcerecordid>1911207650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-b558c3e6f36f461029c60819f1bc208c456b7c5ebb568778bdb10bb09c9980133</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EglL4AiSUJZuEGSdxkgULVPGSitjA2oqdSXGVxGCniP497gOWrOZqdO88DmMXCAkCiutlsu5pfE84YJGASADhgE0QqjyuMIXDjc5EzIGnJ-zU-yUAIC_KY3bCS8GLDMSEqedVN5rY9kb7qK216cxYj9REX7Uzteoo8tSRHo0dIjNEM_sdO1o48n7T6W1DXdRaF-l60OSiD2cXg_XGB0WN2ebO2FFbd57O93XK3u7vXmeP8fzl4Wl2O491BtkYqzwvdUqiTUWbCQReaQElVi0qzaHUWS5UoXNSKhdlUZSqUQhKQaWrqgRM0ym72s0NR3yuyI-yN15T19UD2ZWXWCFyKEQOwZrurNpZ7x218sOZvnZriSA3cOVSbuHKDVwJQga4IXW5X7BSPTV_mV-awXCzM1B488uQk14bCmAa4wJD2Vjz74IfITGM8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911207650</pqid></control><display><type>article</type><title>Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Cong ; Wang, Xujun ; Genchev, Georgi Z. ; Lu, Hui</creator><creatorcontrib>Liu, Cong ; Wang, Xujun ; Genchev, Georgi Z. ; Lu, Hui</creatorcontrib><description>•Conventional LASSO-Cox model could be used to predict cancer patients’ survival by concatenating multi-omics data.•SKI-Cox borrows the information generated by additional types of omics data to guide variable selection.•wLASSO-Cox puts a penalty factor to take the information derived from other omics data into account.•Both methods only use mRNA-expression data for prediction.
New developments in high-throughput genomic technologies have enabled the measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible manner. Developing computational methods and tools for analysis and translation of such genomic data into clinically-relevant information is an ongoing and active area of investigation. For example, several studies have utilized an unsupervised learning framework to cluster patients by integrating omics data. Despite such recent advances, predicting cancer prognosis using integrated omics biomarkers remains a challenge. There is also a shortage of computational tools for predicting cancer prognosis by using supervised learning methods. The current standard approach is to fit a Cox regression model by concatenating the different types of omics data in a linear manner, while penalty could be added for feature selection. A more powerful approach, however, would be to incorporate data by considering relationships among omics datatypes.
Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to incorporate the association among different types of omics data. Both methods fit the Cox proportional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox borrows the information generated by these additional types of omics data to guide variable selection, while wLASSO-Cox incorporates this information as a penalty factor during model fitting.
We show that SKI-Cox and wLASSO-Cox models select more true variables than a LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA expression, methylation, and copy number variation data are integrated to predict the overall survival time of cancer patients. Our methods achieve better performance in predicting patients’ survival in glioblastoma and lung adenocarcinoma.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2017.06.010</identifier><identifier>PMID: 28627406</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenocarcinoma - diagnosis ; Adenocarcinoma - genetics ; Adenocarcinoma - mortality ; Adenocarcinoma - pathology ; Adenocarcinoma of Lung ; Algorithms ; Breast Neoplasms - diagnosis ; Breast Neoplasms - genetics ; Breast Neoplasms - mortality ; Breast Neoplasms - pathology ; Cancer prognosis prediction ; Cox regression ; DNA Copy Number Variations ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genomics - methods ; Genomics - statistics & numerical data ; Glioblastoma - diagnosis ; Glioblastoma - genetics ; Glioblastoma - mortality ; Glioblastoma - pathology ; Humans ; Lung Neoplasms - diagnosis ; Lung Neoplasms - genetics ; Lung Neoplasms - mortality ; Lung Neoplasms - pathology ; Multi-omics ; Prognosis ; Proportional Hazards Models ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Variable selection</subject><ispartof>Methods (San Diego, Calif.), 2017-07, Vol.124, p.100-107</ispartof><rights>2017</rights><rights>Copyright © 2017. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-b558c3e6f36f461029c60819f1bc208c456b7c5ebb568778bdb10bb09c9980133</citedby><cites>FETCH-LOGICAL-c404t-b558c3e6f36f461029c60819f1bc208c456b7c5ebb568778bdb10bb09c9980133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S104620231730066X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28627406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Wang, Xujun</creatorcontrib><creatorcontrib>Genchev, Georgi Z.</creatorcontrib><creatorcontrib>Lu, Hui</creatorcontrib><title>Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•Conventional LASSO-Cox model could be used to predict cancer patients’ survival by concatenating multi-omics data.•SKI-Cox borrows the information generated by additional types of omics data to guide variable selection.•wLASSO-Cox puts a penalty factor to take the information derived from other omics data into account.•Both methods only use mRNA-expression data for prediction.
New developments in high-throughput genomic technologies have enabled the measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible manner. Developing computational methods and tools for analysis and translation of such genomic data into clinically-relevant information is an ongoing and active area of investigation. For example, several studies have utilized an unsupervised learning framework to cluster patients by integrating omics data. Despite such recent advances, predicting cancer prognosis using integrated omics biomarkers remains a challenge. There is also a shortage of computational tools for predicting cancer prognosis by using supervised learning methods. The current standard approach is to fit a Cox regression model by concatenating the different types of omics data in a linear manner, while penalty could be added for feature selection. A more powerful approach, however, would be to incorporate data by considering relationships among omics datatypes.
Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to incorporate the association among different types of omics data. Both methods fit the Cox proportional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox borrows the information generated by these additional types of omics data to guide variable selection, while wLASSO-Cox incorporates this information as a penalty factor during model fitting.
We show that SKI-Cox and wLASSO-Cox models select more true variables than a LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA expression, methylation, and copy number variation data are integrated to predict the overall survival time of cancer patients. Our methods achieve better performance in predicting patients’ survival in glioblastoma and lung adenocarcinoma.</description><subject>Adenocarcinoma - diagnosis</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - mortality</subject><subject>Adenocarcinoma - pathology</subject><subject>Adenocarcinoma of Lung</subject><subject>Algorithms</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - mortality</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer prognosis prediction</subject><subject>Cox regression</subject><subject>DNA Copy Number Variations</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genomics - methods</subject><subject>Genomics - statistics & numerical data</subject><subject>Glioblastoma - diagnosis</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - mortality</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - mortality</subject><subject>Lung Neoplasms - pathology</subject><subject>Multi-omics</subject><subject>Prognosis</subject><subject>Proportional Hazards Models</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Variable selection</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EglL4AiSUJZuEGSdxkgULVPGSitjA2oqdSXGVxGCniP497gOWrOZqdO88DmMXCAkCiutlsu5pfE84YJGASADhgE0QqjyuMIXDjc5EzIGnJ-zU-yUAIC_KY3bCS8GLDMSEqedVN5rY9kb7qK216cxYj9REX7Uzteoo8tSRHo0dIjNEM_sdO1o48n7T6W1DXdRaF-l60OSiD2cXg_XGB0WN2ebO2FFbd57O93XK3u7vXmeP8fzl4Wl2O491BtkYqzwvdUqiTUWbCQReaQElVi0qzaHUWS5UoXNSKhdlUZSqUQhKQaWrqgRM0ym72s0NR3yuyI-yN15T19UD2ZWXWCFyKEQOwZrurNpZ7x218sOZvnZriSA3cOVSbuHKDVwJQga4IXW5X7BSPTV_mV-awXCzM1B488uQk14bCmAa4wJD2Vjz74IfITGM8w</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Liu, Cong</creator><creator>Wang, Xujun</creator><creator>Genchev, Georgi Z.</creator><creator>Lu, Hui</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170715</creationdate><title>Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction</title><author>Liu, Cong ; Wang, Xujun ; Genchev, Georgi Z. ; Lu, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-b558c3e6f36f461029c60819f1bc208c456b7c5ebb568778bdb10bb09c9980133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenocarcinoma - diagnosis</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - mortality</topic><topic>Adenocarcinoma - pathology</topic><topic>Adenocarcinoma of Lung</topic><topic>Algorithms</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - mortality</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer prognosis prediction</topic><topic>Cox regression</topic><topic>DNA Copy Number Variations</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genomics - methods</topic><topic>Genomics - statistics & numerical data</topic><topic>Glioblastoma - diagnosis</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - mortality</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - mortality</topic><topic>Lung Neoplasms - pathology</topic><topic>Multi-omics</topic><topic>Prognosis</topic><topic>Proportional Hazards Models</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Wang, Xujun</creatorcontrib><creatorcontrib>Genchev, Georgi Z.</creatorcontrib><creatorcontrib>Lu, Hui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cong</au><au>Wang, Xujun</au><au>Genchev, Georgi Z.</au><au>Lu, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>124</volume><spage>100</spage><epage>107</epage><pages>100-107</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>•Conventional LASSO-Cox model could be used to predict cancer patients’ survival by concatenating multi-omics data.•SKI-Cox borrows the information generated by additional types of omics data to guide variable selection.•wLASSO-Cox puts a penalty factor to take the information derived from other omics data into account.•Both methods only use mRNA-expression data for prediction.
New developments in high-throughput genomic technologies have enabled the measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible manner. Developing computational methods and tools for analysis and translation of such genomic data into clinically-relevant information is an ongoing and active area of investigation. For example, several studies have utilized an unsupervised learning framework to cluster patients by integrating omics data. Despite such recent advances, predicting cancer prognosis using integrated omics biomarkers remains a challenge. There is also a shortage of computational tools for predicting cancer prognosis by using supervised learning methods. The current standard approach is to fit a Cox regression model by concatenating the different types of omics data in a linear manner, while penalty could be added for feature selection. A more powerful approach, however, would be to incorporate data by considering relationships among omics datatypes.
Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to incorporate the association among different types of omics data. Both methods fit the Cox proportional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox borrows the information generated by these additional types of omics data to guide variable selection, while wLASSO-Cox incorporates this information as a penalty factor during model fitting.
We show that SKI-Cox and wLASSO-Cox models select more true variables than a LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA expression, methylation, and copy number variation data are integrated to predict the overall survival time of cancer patients. Our methods achieve better performance in predicting patients’ survival in glioblastoma and lung adenocarcinoma.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28627406</pmid><doi>10.1016/j.ymeth.2017.06.010</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-2023 |
ispartof | Methods (San Diego, Calif.), 2017-07, Vol.124, p.100-107 |
issn | 1046-2023 1095-9130 |
language | eng |
recordid | cdi_proquest_miscellaneous_1911207650 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adenocarcinoma - diagnosis Adenocarcinoma - genetics Adenocarcinoma - mortality Adenocarcinoma - pathology Adenocarcinoma of Lung Algorithms Breast Neoplasms - diagnosis Breast Neoplasms - genetics Breast Neoplasms - mortality Breast Neoplasms - pathology Cancer prognosis prediction Cox regression DNA Copy Number Variations Female Gene Expression Profiling Gene Expression Regulation, Neoplastic Genomics - methods Genomics - statistics & numerical data Glioblastoma - diagnosis Glioblastoma - genetics Glioblastoma - mortality Glioblastoma - pathology Humans Lung Neoplasms - diagnosis Lung Neoplasms - genetics Lung Neoplasms - mortality Lung Neoplasms - pathology Multi-omics Prognosis Proportional Hazards Models RNA, Messenger - genetics RNA, Messenger - metabolism Variable selection |
title | Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-omics%20facilitated%20variable%20selection%20in%20Cox-regression%20model%20for%20cancer%20prognosis%20prediction&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Liu,%20Cong&rft.date=2017-07-15&rft.volume=124&rft.spage=100&rft.epage=107&rft.pages=100-107&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2017.06.010&rft_dat=%3Cproquest_cross%3E1911207650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911207650&rft_id=info:pmid/28627406&rft_els_id=S104620231730066X&rfr_iscdi=true |