Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy

According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggrega...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2017-07, Vol.17 (14), p.2426-2434
Hauptverfasser: Jiang, Yiyue, Lei, Cheng, Yasumoto, Atsushi, Kobayashi, Hirofumi, Aisaka, Yuri, Ito, Takuro, Guo, Baoshan, Nitta, Nao, Kutsuna, Natsumaro, Ozeki, Yasuyuki, Nakagawa, Atsuhiro, Yatomi, Yutaka, Goda, Keisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2434
container_issue 14
container_start_page 2426
container_title Lab on a chip
container_volume 17
creator Jiang, Yiyue
Lei, Cheng
Yasumoto, Atsushi
Kobayashi, Hirofumi
Aisaka, Yuri
Ito, Takuro
Guo, Baoshan
Nitta, Nao
Kutsuna, Natsumaro
Ozeki, Yasuyuki
Nakagawa, Atsuhiro
Yatomi, Yutaka
Goda, Keisuke
description According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggregated platelets play an important role. The presence of aggregated platelets in blood may be related to atherothrombosis (especially acute myocardial infarction) and is, hence, useful as a potential biomarker for the disease. However, conventional high-throughput blood analysers fail to accurately identify aggregated platelets in blood. Here we present an in vitro on-chip assay for label-free, single-cell image-based detection of aggregated platelets in human blood. This assay builds on a combination of optofluidic time-stretch microscopy on a microfluidic chip operating at a high throughput of 10 000 blood cells per second with machine learning, enabling morphology-based identification and enumeration of aggregated platelets in a short period of time. By performing cell classification with machine learning, we differentiate aggregated platelets from single platelets and white blood cells with a high specificity and sensitivity of 96.6% for both. Our results indicate that the assay is potentially promising as predictive diagnosis and therapeutic monitoring of thrombotic disorders in clinical settings.
doi_str_mv 10.1039/c7lc00396j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1911207472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911207472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-54ab56d06a80971a8cd86063c35b138c541af70233f8516803486e6afe0cbd6f3</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EglJYeADkESEF7DixnRFV_KoSC8yRY39ujZw42O7Qtyel0One4ejq6iB0RckdJay518JrMhX-dYRmtBKsIFQ2x4feiDN0ntIXIbSuuDxFZ6XkpahFPUNpqTrwhY0A2EAGnV0YcLBYrVYRViqDwaOfwkNO2A248yEY3G1xr_TaDVB4UHFww6pQzkxwGHOwfuOM0zi7HoqUI2S9xr3TMSQdxu0FOrHKJ7j8yzn6fHr8WLwUy_fn18XDstCsqXJRV6qruSFcSdIIqqQ2khPONKs7yqSuK6qsICVjVtaUS8IqyYErC0R3hls2Rzf73TGG7w2k3PYuafBeDRA2qaUNpSURlSgn9HaP7j6mCLYdo-tV3LaUtDvJ7UIsF7-S3yb4-m930_VgDui_VfYDfal4tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911207472</pqid></control><display><type>article</type><title>Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Jiang, Yiyue ; Lei, Cheng ; Yasumoto, Atsushi ; Kobayashi, Hirofumi ; Aisaka, Yuri ; Ito, Takuro ; Guo, Baoshan ; Nitta, Nao ; Kutsuna, Natsumaro ; Ozeki, Yasuyuki ; Nakagawa, Atsuhiro ; Yatomi, Yutaka ; Goda, Keisuke</creator><creatorcontrib>Jiang, Yiyue ; Lei, Cheng ; Yasumoto, Atsushi ; Kobayashi, Hirofumi ; Aisaka, Yuri ; Ito, Takuro ; Guo, Baoshan ; Nitta, Nao ; Kutsuna, Natsumaro ; Ozeki, Yasuyuki ; Nakagawa, Atsuhiro ; Yatomi, Yutaka ; Goda, Keisuke</creatorcontrib><description>According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggregated platelets play an important role. The presence of aggregated platelets in blood may be related to atherothrombosis (especially acute myocardial infarction) and is, hence, useful as a potential biomarker for the disease. However, conventional high-throughput blood analysers fail to accurately identify aggregated platelets in blood. Here we present an in vitro on-chip assay for label-free, single-cell image-based detection of aggregated platelets in human blood. This assay builds on a combination of optofluidic time-stretch microscopy on a microfluidic chip operating at a high throughput of 10 000 blood cells per second with machine learning, enabling morphology-based identification and enumeration of aggregated platelets in a short period of time. By performing cell classification with machine learning, we differentiate aggregated platelets from single platelets and white blood cells with a high specificity and sensitivity of 96.6% for both. Our results indicate that the assay is potentially promising as predictive diagnosis and therapeutic monitoring of thrombotic disorders in clinical settings.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c7lc00396j</identifier><identifier>PMID: 28627575</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Blood Platelets - cytology ; Equipment Design ; Humans ; Image Processing, Computer-Assisted - methods ; Machine Learning ; Microfluidic Analytical Techniques - instrumentation ; Microscopy - instrumentation ; Microscopy - methods ; Platelet Aggregation - physiology</subject><ispartof>Lab on a chip, 2017-07, Vol.17 (14), p.2426-2434</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-54ab56d06a80971a8cd86063c35b138c541af70233f8516803486e6afe0cbd6f3</citedby><cites>FETCH-LOGICAL-c394t-54ab56d06a80971a8cd86063c35b138c541af70233f8516803486e6afe0cbd6f3</cites><orcidid>0000-0002-4505-2061 ; 0000-0001-8439-4235 ; 0000-0002-6806-7055 ; 0000-0002-9093-9016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28627575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yiyue</creatorcontrib><creatorcontrib>Lei, Cheng</creatorcontrib><creatorcontrib>Yasumoto, Atsushi</creatorcontrib><creatorcontrib>Kobayashi, Hirofumi</creatorcontrib><creatorcontrib>Aisaka, Yuri</creatorcontrib><creatorcontrib>Ito, Takuro</creatorcontrib><creatorcontrib>Guo, Baoshan</creatorcontrib><creatorcontrib>Nitta, Nao</creatorcontrib><creatorcontrib>Kutsuna, Natsumaro</creatorcontrib><creatorcontrib>Ozeki, Yasuyuki</creatorcontrib><creatorcontrib>Nakagawa, Atsuhiro</creatorcontrib><creatorcontrib>Yatomi, Yutaka</creatorcontrib><creatorcontrib>Goda, Keisuke</creatorcontrib><title>Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggregated platelets play an important role. The presence of aggregated platelets in blood may be related to atherothrombosis (especially acute myocardial infarction) and is, hence, useful as a potential biomarker for the disease. However, conventional high-throughput blood analysers fail to accurately identify aggregated platelets in blood. Here we present an in vitro on-chip assay for label-free, single-cell image-based detection of aggregated platelets in human blood. This assay builds on a combination of optofluidic time-stretch microscopy on a microfluidic chip operating at a high throughput of 10 000 blood cells per second with machine learning, enabling morphology-based identification and enumeration of aggregated platelets in a short period of time. By performing cell classification with machine learning, we differentiate aggregated platelets from single platelets and white blood cells with a high specificity and sensitivity of 96.6% for both. Our results indicate that the assay is potentially promising as predictive diagnosis and therapeutic monitoring of thrombotic disorders in clinical settings.</description><subject>Algorithms</subject><subject>Blood Platelets - cytology</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microscopy - instrumentation</subject><subject>Microscopy - methods</subject><subject>Platelet Aggregation - physiology</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kL1OwzAYRS0EglJYeADkESEF7DixnRFV_KoSC8yRY39ujZw42O7Qtyel0One4ejq6iB0RckdJay518JrMhX-dYRmtBKsIFQ2x4feiDN0ntIXIbSuuDxFZ6XkpahFPUNpqTrwhY0A2EAGnV0YcLBYrVYRViqDwaOfwkNO2A248yEY3G1xr_TaDVB4UHFww6pQzkxwGHOwfuOM0zi7HoqUI2S9xr3TMSQdxu0FOrHKJ7j8yzn6fHr8WLwUy_fn18XDstCsqXJRV6qruSFcSdIIqqQ2khPONKs7yqSuK6qsICVjVtaUS8IqyYErC0R3hls2Rzf73TGG7w2k3PYuafBeDRA2qaUNpSURlSgn9HaP7j6mCLYdo-tV3LaUtDvJ7UIsF7-S3yb4-m930_VgDui_VfYDfal4tQ</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Jiang, Yiyue</creator><creator>Lei, Cheng</creator><creator>Yasumoto, Atsushi</creator><creator>Kobayashi, Hirofumi</creator><creator>Aisaka, Yuri</creator><creator>Ito, Takuro</creator><creator>Guo, Baoshan</creator><creator>Nitta, Nao</creator><creator>Kutsuna, Natsumaro</creator><creator>Ozeki, Yasuyuki</creator><creator>Nakagawa, Atsuhiro</creator><creator>Yatomi, Yutaka</creator><creator>Goda, Keisuke</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4505-2061</orcidid><orcidid>https://orcid.org/0000-0001-8439-4235</orcidid><orcidid>https://orcid.org/0000-0002-6806-7055</orcidid><orcidid>https://orcid.org/0000-0002-9093-9016</orcidid></search><sort><creationdate>20170721</creationdate><title>Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy</title><author>Jiang, Yiyue ; Lei, Cheng ; Yasumoto, Atsushi ; Kobayashi, Hirofumi ; Aisaka, Yuri ; Ito, Takuro ; Guo, Baoshan ; Nitta, Nao ; Kutsuna, Natsumaro ; Ozeki, Yasuyuki ; Nakagawa, Atsuhiro ; Yatomi, Yutaka ; Goda, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-54ab56d06a80971a8cd86063c35b138c541af70233f8516803486e6afe0cbd6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Blood Platelets - cytology</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microscopy - instrumentation</topic><topic>Microscopy - methods</topic><topic>Platelet Aggregation - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yiyue</creatorcontrib><creatorcontrib>Lei, Cheng</creatorcontrib><creatorcontrib>Yasumoto, Atsushi</creatorcontrib><creatorcontrib>Kobayashi, Hirofumi</creatorcontrib><creatorcontrib>Aisaka, Yuri</creatorcontrib><creatorcontrib>Ito, Takuro</creatorcontrib><creatorcontrib>Guo, Baoshan</creatorcontrib><creatorcontrib>Nitta, Nao</creatorcontrib><creatorcontrib>Kutsuna, Natsumaro</creatorcontrib><creatorcontrib>Ozeki, Yasuyuki</creatorcontrib><creatorcontrib>Nakagawa, Atsuhiro</creatorcontrib><creatorcontrib>Yatomi, Yutaka</creatorcontrib><creatorcontrib>Goda, Keisuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yiyue</au><au>Lei, Cheng</au><au>Yasumoto, Atsushi</au><au>Kobayashi, Hirofumi</au><au>Aisaka, Yuri</au><au>Ito, Takuro</au><au>Guo, Baoshan</au><au>Nitta, Nao</au><au>Kutsuna, Natsumaro</au><au>Ozeki, Yasuyuki</au><au>Nakagawa, Atsuhiro</au><au>Yatomi, Yutaka</au><au>Goda, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2017-07-21</date><risdate>2017</risdate><volume>17</volume><issue>14</issue><spage>2426</spage><epage>2434</epage><pages>2426-2434</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggregated platelets play an important role. The presence of aggregated platelets in blood may be related to atherothrombosis (especially acute myocardial infarction) and is, hence, useful as a potential biomarker for the disease. However, conventional high-throughput blood analysers fail to accurately identify aggregated platelets in blood. Here we present an in vitro on-chip assay for label-free, single-cell image-based detection of aggregated platelets in human blood. This assay builds on a combination of optofluidic time-stretch microscopy on a microfluidic chip operating at a high throughput of 10 000 blood cells per second with machine learning, enabling morphology-based identification and enumeration of aggregated platelets in a short period of time. By performing cell classification with machine learning, we differentiate aggregated platelets from single platelets and white blood cells with a high specificity and sensitivity of 96.6% for both. Our results indicate that the assay is potentially promising as predictive diagnosis and therapeutic monitoring of thrombotic disorders in clinical settings.</abstract><cop>England</cop><pmid>28627575</pmid><doi>10.1039/c7lc00396j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4505-2061</orcidid><orcidid>https://orcid.org/0000-0001-8439-4235</orcidid><orcidid>https://orcid.org/0000-0002-6806-7055</orcidid><orcidid>https://orcid.org/0000-0002-9093-9016</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2017-07, Vol.17 (14), p.2426-2434
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_1911207472
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Algorithms
Blood Platelets - cytology
Equipment Design
Humans
Image Processing, Computer-Assisted - methods
Machine Learning
Microfluidic Analytical Techniques - instrumentation
Microscopy - instrumentation
Microscopy - methods
Platelet Aggregation - physiology
title Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label-free%20detection%20of%20aggregated%20platelets%20in%20blood%20by%20machine-learning-aided%20optofluidic%20time-stretch%20microscopy&rft.jtitle=Lab%20on%20a%20chip&rft.au=Jiang,%20Yiyue&rft.date=2017-07-21&rft.volume=17&rft.issue=14&rft.spage=2426&rft.epage=2434&rft.pages=2426-2434&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c7lc00396j&rft_dat=%3Cproquest_cross%3E1911207472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911207472&rft_id=info:pmid/28627575&rfr_iscdi=true